Proving a statement about covered intervals

  • #1
littlemathquark
31
9
New user has been reminded to always show their work on schoolwork problems.
Homework Statement
The rational number p/q in the inerval (0,1) covered by the closed interval [p/q-1/4q^2, p/q+1/4q^2]. How do I prove that none of these intervals cover the number (sqrt{2}) /2?
Relevant Equations
The rational number p/q in the inerval (0,1) covered by the closed interval [p/q-1/4q^2, p/q+1/4q^2]. How do I prove that none of these intervals cover the number (sqrt{2}) /2?
I need any idea. I haven't made any progress in solving the problem.
 
Physics news on Phys.org
  • #2
The idea is that if ##0 < \frac p q < \frac {\sqrt 2}{2}##, then ##\frac p q + \frac 1 {4q^2} < \frac {\sqrt 2}{2}##. And, if ##1 > \frac p q > \frac {\sqrt 2}{2}##, then ##\frac p q - \frac 1 {4q^2} > \frac {\sqrt 2}{2}##.

Can you show that?
 
  • #3
I used Dirichlet approximation theorem but I can't find any progression.
 
  • #4
Looks tricky.
 
  • #5
  1. ##\alpha := \sqrt{2}/2 ## is a root of ##f(x) = 2x^2-1##.
  2. For ## x\in (\alpha - 1/5, \alpha +1/5) ## we have ##(\frac{1}{2} <) f'(x) < \frac{40}{11} =: C < 4 ##.
  3. Conclude by Lagrange MVT that
    [tex]
    |x-\alpha| < \frac{1}{5} \Rightarrow |f(x)-f(\alpha)| = |2x^2-1| < C|x-\alpha|
    [/tex]
Claim. We have
[tex]
\left\lvert \frac{m}{n}-\alpha \right\rvert > \frac{1}{4n^2}
[/tex]
for all ##m,n\in\mathbb N##. Then it follows that either
[tex]
\alpha > \frac{m}{n} + \frac{1}{4n^2}\quad\mbox{or}\quad \frac{m}{n}-\frac{1}{4n^2}> \alpha.
[/tex]

Proof of claim. The nontrivial case is ##|m/n - \alpha| < 1/5##. Then
[tex]
\left\lvert f\left(\frac{m}{n}\right)\right\rvert = \left\lvert 2\frac{m^2}{n^2}-1 \right\rvert < C\left\lvert \frac{m}{n}-\alpha \right\rvert \Rightarrow n^2\left\lvert 2\frac{m^2}{n^2}-1 \right\rvert < Cn^2\left\lvert \frac{m}{n}-\alpha \right\rvert.
[/tex]
Because ##f## has no rational roots, we conclude ## n^2\left\lvert 2\frac{m^2}{n^2}-1 \right\rvert \geqslant 1 ## and therefore
[tex]
Cn^2\left\lvert \frac{m}{n}-\alpha \right\rvert > 1 \Rightarrow \left\lvert \frac{m}{n}-\alpha \right\rvert > \frac{1}{Cn^2} > \frac{1}{4n^2}.
[/tex]

This is an adaptation of a proof of Liouville's theorem. The trick is finding a small enough interval around ##\alpha## such that you get a suitable upper bound for the derivative.
 
Last edited:
Back
Top