- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hi! (Wave)
$$\text{ I want to prove that } n \cdot 4^n=O(n!), \text{ so that } \exists c>0, n_0 \geq 0, \text{ such that } \forall n \geq n_0: n \cdot 4^n \leq c \cdot n!$$
That's what I have tried:
$$n \cdot 4^n=n \cdot \underbrace{4 \cdot 4 \cdots 4}_n=4 \cdot 4 \cdot 4 \cdot4 \cdot \underbrace{4 \cdot 4 \cdots 4}_{n-4} \cdot n \leq 4^4 \cdot 1 \cdot 2 \cdot 3 \cdot \underbrace{4 \cdot 4 \cdots 4}_{n-4} \cdot n \leq 4^4 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdots (n-1) \cdot n=4^4 \cdot n!, \forall n \geq 0$$
We pick $n_0=0$ and $c=4^4$ and we have that: $4^n=O(n!)$.
Can we say it like that or do we have to prove that it stands also with an other way, for example by induction? (Thinking)
$$\text{ I want to prove that } n \cdot 4^n=O(n!), \text{ so that } \exists c>0, n_0 \geq 0, \text{ such that } \forall n \geq n_0: n \cdot 4^n \leq c \cdot n!$$
That's what I have tried:
$$n \cdot 4^n=n \cdot \underbrace{4 \cdot 4 \cdots 4}_n=4 \cdot 4 \cdot 4 \cdot4 \cdot \underbrace{4 \cdot 4 \cdots 4}_{n-4} \cdot n \leq 4^4 \cdot 1 \cdot 2 \cdot 3 \cdot \underbrace{4 \cdot 4 \cdots 4}_{n-4} \cdot n \leq 4^4 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdots (n-1) \cdot n=4^4 \cdot n!, \forall n \geq 0$$
We pick $n_0=0$ and $c=4^4$ and we have that: $4^n=O(n!)$.
Can we say it like that or do we have to prove that it stands also with an other way, for example by induction? (Thinking)