- #1
VladZH
- 56
- 1
Hi everyone. Could you help me to find the way to prove some things?
1)Changing of body velocity or reference frame don't contribute to spacetime curvature
2)On the contrary the change of body mass causes the change of curvature in local spacetime
I use the assumption that if we have the same tensor in the right part of Einstein field equation the curvature remains the same and changes othwerwise
$$R_{\mu \nu} - {1 \over 2}g_{\mu \nu}\,R + g_{\mu \nu} \Lambda =
{8 \pi G \over c^4} T_{\mu \nu}$$
My suggestion is:
1) Let a body with some velocity has stress-energy tensor ##T##. Then in another reference frame let the body stress-energy tensor be ##T'##. As stress-energy tensor is invariant we should get the same tensor but different coordiantes when changing velocity or reference frame . Will it be the proof if I manage to find ##\Lambda## from the following equation and show that it is a linear transformation
$$T_{\mu' \nu'}'={\Lambda^{\mu}}_{\mu'} {\Lambda^{\nu}}_{\nu'} T_{\mu \nu}.$$
2) Let a body be stationary and has some mass. Its stress-energy tensor is ##T##. Then we change the mass of a body and get ##T'## for its stress-energy tensor. So we should have ##T \neq T'##. Can I use the previous equation here to prove this?
Can this work? Or I need to use the Riemann tensor and Richi scalar in the left part Einstein field equation?
Thank you.
1)Changing of body velocity or reference frame don't contribute to spacetime curvature
2)On the contrary the change of body mass causes the change of curvature in local spacetime
I use the assumption that if we have the same tensor in the right part of Einstein field equation the curvature remains the same and changes othwerwise
$$R_{\mu \nu} - {1 \over 2}g_{\mu \nu}\,R + g_{\mu \nu} \Lambda =
{8 \pi G \over c^4} T_{\mu \nu}$$
My suggestion is:
1) Let a body with some velocity has stress-energy tensor ##T##. Then in another reference frame let the body stress-energy tensor be ##T'##. As stress-energy tensor is invariant we should get the same tensor but different coordiantes when changing velocity or reference frame . Will it be the proof if I manage to find ##\Lambda## from the following equation and show that it is a linear transformation
$$T_{\mu' \nu'}'={\Lambda^{\mu}}_{\mu'} {\Lambda^{\nu}}_{\nu'} T_{\mu \nu}.$$
2) Let a body be stationary and has some mass. Its stress-energy tensor is ##T##. Then we change the mass of a body and get ##T'## for its stress-energy tensor. So we should have ##T \neq T'##. Can I use the previous equation here to prove this?
Can this work? Or I need to use the Riemann tensor and Richi scalar in the left part Einstein field equation?
Thank you.