Proving Even Fct Lim x->0 f(x)=L iff Lim x->0+ f(x)=L

MathSquareRoo
Messages
26
Reaction score
0

Homework Statement


Prove that if f: R->R is an even function, then lim x->0 f(x)=L if and only if lim x->0+ f(x)=L.


Homework Equations





The Attempt at a Solution



So far I have:

If f is an even function f(x)=f(-x) for x in domain of f.

Then I am trying to apply the limit definitions, but am unsure of how to write the proof from here.
 
Physics news on Phys.org
MathSquareRoo said:

Homework Statement


Prove that if f: R->R is an even function, then lim x->0 f(x)=L if and only if lim x->0+ f(x)=L.


Homework Equations





The Attempt at a Solution



So far I have:

If f is an even function f(x)=f(-x) for x in domain of f.

Then I am trying to apply the limit definitions, but am unsure of how to write the proof from here.

Write down the definition of lim x->0+ f(x)=L. Now change x to -x. Doesn't it look like the definition of lim x->0- f(x)=L once you use that f is even?
 
So lim x->0+ f(x)=L implies there exists a real number L s.t. epsilon>0 there exists delta>0 s.t. lf(x)-Ll<epsilon provided 0<x-a<delta.

Then lim x->0+ f(-x)=L implies that there exists a real number L s.t. epsilon>0 there exists delta>0 s.t. lf(-x)-Ll<epsilon provided 0<x-a<delta.

I have the definitions, but I don't understand the last part of your comment, can you clarify?
 
MathSquareRoo said:
So lim x->0+ f(x)=L implies there exists a real number L s.t. epsilon>0 there exists delta>0 s.t. lf(x)-Ll<epsilon provided 0<x-a<delta.

Then lim x->0+ f(-x)=L implies that there exists a real number L s.t. epsilon>0 there exists delta>0 s.t. lf(-x)-Ll<epsilon provided 0<x-a<delta.

I have the definitions, but I don't understand the last part of your comment, can you clarify?


'a' in your problem is 0. 0<x<delta, is the same as -delta<-x<0. What does the definition of lim x->0- f(x)=L look like?
 
lim x->0- f(x)=L implies that there exists a real number L s.t. epsilon>0 there exists delta>0 s.t. lf(x)-Ll<epsilon provided 0<a-x<delta.

I'm am getting confused with all these definitions though, can you help me organize the argument using the definitions?
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top