MHB Proving Inequality: \(\frac{1}{n^2}\) Sum < \(\frac{7}{4}\)

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Inequality Sum
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Prove the inequality:

\[\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2} < \frac{7}{4}, \: \:\: \: n\in \mathbb{N}.\]

- without using the well-known result:

\[\lim_{n\rightarrow \infty }\sum_{k=1}^{n}\frac{1}{k^2} = \frac{\pi^2}{6}\]
 
Mathematics news on Phys.org
My solution:

$$S=\sum_{k=1}^n\left(\frac{1}{k^2}\right)$$

We may write for $3\le n$:

$$S<\frac{5}{4}+\int_2^n x^{-2}\,dx=\frac{7}{4}-\frac{1}{n}$$

Hence, for all $n\in\mathbb{N}$, we find:

$$S<\frac{7}{4}$$
 
MarkFL said:
My solution:

$$S=\sum_{k=1}^n\left(\frac{1}{k^2}\right)$$

We may write for $3\le n$:

$$S<\frac{5}{4}+\int_2^n x^{-2}\,dx=\frac{7}{4}-\frac{1}{n}$$

Hence, for all $n\in\mathbb{N}$, we find:

$$S<\frac{7}{4}$$

Thankyou, MarkFL!, for your participation and for a correct answer!
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top