- #1
lfdahl
Gold Member
MHB
- 749
- 0
Prove the inequality:
\[\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2} < \frac{7}{4}, \: \:\: \: n\in \mathbb{N}.\]
- without using the well-known result:
\[\lim_{n\rightarrow \infty }\sum_{k=1}^{n}\frac{1}{k^2} = \frac{\pi^2}{6}\]
\[\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2} < \frac{7}{4}, \: \:\: \: n\in \mathbb{N}.\]
- without using the well-known result:
\[\lim_{n\rightarrow \infty }\sum_{k=1}^{n}\frac{1}{k^2} = \frac{\pi^2}{6}\]