- #1
Math Amateur
Gold Member
MHB
- 3,998
- 48
I am reading Dummit ad Foote's proof of Hilbert's Basis Theorem (See attached for the theorem and proof)
In the proof I is an ideal in R[x] L is the set of all leading coefficients of elements of I
D&F then proceed to prove that L is an ideal of R
Basically they establish that if elements a and b belong to L and r belongs to L then ra - b belongs to L.
D&F claim that this shows that L is an ideal but for an ideal we need to show that for [TEX] a, b \in L [/TEX] and [TEX] r \in R[/TEX] we have:
[TEX] a - b \in L [/TEX] and [TEX] ra \in R [/TEX]
My question is how exactly does [TEX] ra - b \in L \Longrightarrow a - b \in L [/TEX] and [TEX] ra \in R [/TEX]??
Peter[This has also been posted on MHF]
In the proof I is an ideal in R[x] L is the set of all leading coefficients of elements of I
D&F then proceed to prove that L is an ideal of R
Basically they establish that if elements a and b belong to L and r belongs to L then ra - b belongs to L.
D&F claim that this shows that L is an ideal but for an ideal we need to show that for [TEX] a, b \in L [/TEX] and [TEX] r \in R[/TEX] we have:
[TEX] a - b \in L [/TEX] and [TEX] ra \in R [/TEX]
My question is how exactly does [TEX] ra - b \in L \Longrightarrow a - b \in L [/TEX] and [TEX] ra \in R [/TEX]??
Peter[This has also been posted on MHF]