- #36
WWGD
Science Advisor
Gold Member
- 7,376
- 11,342
davidge said:Yes
Why not? Can you point out where I'm wrong in the following? Suppose ##X## is a non compact space and suppose we have a surjection ##f## from ##X## to another space ##Y##. Then
$$X = \bigcup_{i \in I} U_i = \bigcup_{i \in F \subset I} U_i \Longleftrightarrow F = I$$
Also, ##Y = f(X)##. That is, ##Y## is the image of ##X## under ##f##. But $$ f(X) = f \bigg(\bigcup_{i \in I} U_i \bigg) = f \bigg(\bigcup_{i \in F \subset I} U_i \bigg)$$ with ##F = I##, which means ##Y## is also not compact.
Like Infrared pointed out: what if ##Y##={##pt##}, a singleton? Or consider ##[-1,1)## under ##f(x)=x^2 ##.