- #1
steenis
- 312
- 18
- TL;DR Summary
- A semidefinite inner product is also positive-definite
I have the followinq question:
Let ##(,)## be a real-valued inner product on a real vector space ##V##. That is, ##(,)## is a symmetric bilinear map ##(,):V \times V \rightarrow \mathbb{R}## that is non-degenerate
Suppose, for all ##v \in V## we have ##(v,v) \geq 0##
Now I want to prove that if ##(x,x)=0## then ##x=0## for ##x \in V##
Can anybody help me ?
Let ##(,)## be a real-valued inner product on a real vector space ##V##. That is, ##(,)## is a symmetric bilinear map ##(,):V \times V \rightarrow \mathbb{R}## that is non-degenerate
Suppose, for all ##v \in V## we have ##(v,v) \geq 0##
Now I want to prove that if ##(x,x)=0## then ##x=0## for ##x \in V##
Can anybody help me ?