- #1
ergospherical
- 1,055
- 1,347
We have a map ##\phi : M \rightarrow N##, where ##N## has dimension ##n## and ##M## has dimension ##m=n-1##. So we consider the hypersurface ##\Sigma \equiv \phi(M)## picked out by the map. We also have an orthogonal projector, ##{\bot^a}_b \equiv \delta^a_b + n^a n_b##, where ##n## is the unit normal to ##\Sigma##.
The exercise is to just verify that the expected properties hold, i.e. that
(i) for a vector ##V##, that ##\phi_{\star} V = \bot (\phi_{\star} V)##
(ii) for a ##(0,s)## tensor ##\omega##, that ##(\phi^{\star} \omega) = \phi^{\star}(\bot \omega)##
(iii) for a ##(r,0)## tensor ##T##, that ##\phi_{\star} T = \bot(\phi_{\star} T)##
I can reason for (i) - i.e. that since ##V## is the tangent vector to a curve ##\lambda : I \rightarrow M##, and the push-forward curve ##\phi \circ \lambda : I \rightarrow N## must lie completely in ##\Sigma##, so ##\phi_{\star} V## must be tangent to ##\Sigma##. So ##n_b (\phi_{\star} V)^b = 0## and:$${\bot^a}_b (\phi_{\star} V)^b = (\phi_{\star} V)^a + n^a n_b (\phi_{\star} V)^b = (\phi_{\star} V)^a$$For (ii), I'm missing a step or two. I would start just from the basics,\begin{align*}
(\phi^{\star} \omega)(X_1, \dots, X_s) &= \omega(\phi_{\star} X_1, \dots, \phi_{\star} X_s) \\
&= \omega( \bot (\phi_{\star} X_1), \dots, \bot (\phi_{\star} X_s) )
\end{align*}What next? I can't use the same reasoning as before to argue that ##\phi^{\star} \omega## is tangent to ##\Sigma##, because ##\omega## isn't obtained from a push-forward of a curve (it's instead defined by its action on vectors). Any ideas...?
The exercise is to just verify that the expected properties hold, i.e. that
(i) for a vector ##V##, that ##\phi_{\star} V = \bot (\phi_{\star} V)##
(ii) for a ##(0,s)## tensor ##\omega##, that ##(\phi^{\star} \omega) = \phi^{\star}(\bot \omega)##
(iii) for a ##(r,0)## tensor ##T##, that ##\phi_{\star} T = \bot(\phi_{\star} T)##
I can reason for (i) - i.e. that since ##V## is the tangent vector to a curve ##\lambda : I \rightarrow M##, and the push-forward curve ##\phi \circ \lambda : I \rightarrow N## must lie completely in ##\Sigma##, so ##\phi_{\star} V## must be tangent to ##\Sigma##. So ##n_b (\phi_{\star} V)^b = 0## and:$${\bot^a}_b (\phi_{\star} V)^b = (\phi_{\star} V)^a + n^a n_b (\phi_{\star} V)^b = (\phi_{\star} V)^a$$For (ii), I'm missing a step or two. I would start just from the basics,\begin{align*}
(\phi^{\star} \omega)(X_1, \dots, X_s) &= \omega(\phi_{\star} X_1, \dots, \phi_{\star} X_s) \\
&= \omega( \bot (\phi_{\star} X_1), \dots, \bot (\phi_{\star} X_s) )
\end{align*}What next? I can't use the same reasoning as before to argue that ##\phi^{\star} \omega## is tangent to ##\Sigma##, because ##\omega## isn't obtained from a push-forward of a curve (it's instead defined by its action on vectors). Any ideas...?
Last edited: