[QFT-Schwartz Page. 256] Violation of operator exponentiation rule ?

In summary, the discussion on page 256 of QFT-Schwartz addresses potential violations of the operator exponentiation rule in quantum field theory. It examines the conditions under which the usual mathematical operations involving exponentiation of operators may not hold, highlighting implications for physical interpretations and calculations within the framework of quantum mechanics. The text emphasizes the need for careful consideration of operator ordering and the implications of non-commutativity in this context.
  • #1
Golak Bage
3
1
TL;DR Summary
Schwartz derives path integral formulation from 'non-relativistic QM'.
When computing the projection of time-evoluted state ## |x_j> ## on ## |x_{j+1}> ## it uses the 'completeness' of momentum basis ## \int \frac{dp}{2\pi} |p><p| ##. Next it explicitly states the form of Hamiltonian ## \hat{H} = \frac{\hat{p}^2}{2m}+\hat{V}(\hat{x_j},t_j) ##. Thereafter i believe it uses the relation $$ e^{\frac{\hat{p}^2}{2m}+\hat{V}(\hat{x_j},t_j)} = e^{\frac{\hat{p}^2}{2m}}\times e^{\hat{V}(\hat{x_j},t_j)}.$$ This pre-supposes that ##[\hat{p},\hat{V}(\hat{x_j},t_j)]=0##. In QM for any two operators (say ##\hat{A}\ \&\ \hat{B} ##) ##e^{\hat{A}+\hat{B}}=e^{\hat{A}}\times e^{\hat{B}}\times e^{-\frac{1}{2}[\hat{A}, \hat{B}]}##, therefore above relation doesn't appear general (it's more specific). I'd like some feedback on my thought.

Screenshot 2024-05-21 233704.png
 
  • Like
Likes dextercioby
Physics news on Phys.org
  • #2
Golak Bage said:
##\large e^{\hat{A}+\hat{B}}=e^{\hat{A}}\times e^{\hat{B}}\times e^{-\frac{1}{2}[\hat{A}, \hat{B}]}##

Apply this to ##\large e^{-i[\frac{\hat{p}^2}{2m} + V(\hat{x}_j, t_j) ] \delta t }. \,\,\,\,## So, ##\hat{A} = -i\frac{\hat p^2}{2m} \delta t## and ##\hat B =-iV(\hat x_j, t_j)\delta t##.

Note that ##[\hat A, \hat B]## is proportional to ##\delta t ^2. \,\,## If ##\delta t## is assumed to be very small, perhaps we can neglect terms of second order in ##\delta t## and approximate ##e^{-\frac{1}{2}[\hat{A}, \hat{B}]} \approx 1##.
 
  • Like
Likes dextercioby, Demystifier and Golak Bage
  • #3
TSny said:
Apply this to ##\large e^{-i[\frac{\hat{p}^2}{2m} + V(\hat{x}_j, t_j) ] \delta t }. \,\,\,\,## So, ##\hat{A} = -i\frac{\hat p^2}{2m} \delta t## and ##\hat B =-iV(\hat x_j, t_j)\delta t##.

Note that ##[\hat A, \hat B]## is proportional to ##\delta t ^2. \,\,## If ##\delta t## is assumed to be very small, perhaps we can neglect terms of second order in ##\delta t## and approximate ##e^{-\frac{1}{2}[\hat{A}, \hat{B}]} \approx 1##.
Thank you. It actually makes sense.
 

Similar threads

Replies
13
Views
2K
Replies
4
Views
2K
Replies
9
Views
3K
Replies
15
Views
2K
Replies
27
Views
3K
Replies
5
Views
2K
Back
Top