QM: Two coupled spins in a magnetic field

AI Thread Summary
The discussion revolves around the Hamiltonian for two coupled spins in a magnetic field, expressed in a specific basis. Participants explore how to write the Hamiltonian in terms of the Pauli spin matrices and clarify the correct form of the Hamiltonian, which includes terms for both the magnetic field and the coupling between the spins. There is a focus on using ladder operators to evaluate the Hamiltonian's action on the basis states, leading to a matrix representation. Several corrections are made regarding factors in the Hamiltonian's terms, particularly concerning the contributions from the spin components. The final matrix representation of the Hamiltonian is confirmed to be correct after addressing the necessary adjustments.
barefeet
Messages
58
Reaction score
2

Homework Statement


Consider two spins, L and R, in a magnetic field along the z-axis, i.e. B = (0, 0, B). The magnetic moments of the two spins are coupled to each other so that the total Hamiltonian reads
H = g\mu_B\mathbf{B}\cdot(\mathbf{S}_L + \mathbf{S}_R) + J \mathbf{S}_L\cdot \mathbf{S}_R

Write this Hamiltonian in the basis \mathbf{\{} \mid \uparrow \uparrow \rangle, \mid \uparrow \downarrow \rangle, \mid \downarrow \uparrow \rangle, \mid \downarrow \downarrow \rangle \mathbf{\}}

Homework Equations



The equations for the Pauli spin matrices

The Attempt at a Solution


I know that generally you can write a matrix:
<br /> \newcommand{\unit}{1\!\!1}<br /> a\unit+ x \hat{\sigma_x} + y\hat{\sigma_y} + z\hat{\sigma_z} = <br /> \left( \begin{array}{ccc}<br /> a + z &amp; x-iy \\<br /> x+iy &amp; a-z \end{array} \right)<br />

But other than that I don't know how to start especially with two particles.
 
Physics news on Phys.org
Write the Hamiltonian in cartesian components.
 
You have four states, so your Hamiltonian is going to be a 4x4 matrix. Start by examining what you get when you act on one of your states with your Hamiltonian. Use the result to write down part of the Hamiltonian.
 
You mean like
<br /> H_x = J\mathbf{S}_{L,x} \mathbf{S}_{R,x} \\<br /> H_y = J\mathbf{S}_{L,y} \mathbf{S}_{R,y} \\<br /> H_z = B(\mathbf{S}_{L,z} + \mathbf{S}_{R,z}) + J\mathbf{S}_{L,z} \mathbf{S}_{R,z} <br />
?
 
No, this is not correct. The Hamiltonian is not a vector. He means that you should expand the scalar products in terms of the components of the vectors contained in them.
 
Write the Hamiltonian in cartesian spin components, indeed.
 
Ok, but then would it still be the same except that the hamiltonian is not a vector so just a summation of all the terms? Like:
<br /> H = J\mathbf{S}_{L,x} \mathbf{S}_{R,x} + J\mathbf{S}_{L,y} \mathbf{S}_{R,y} + B(\mathbf{S}_{L,z} + \mathbf{S}_{R,z}) + J\mathbf{S}_{L,z} \mathbf{S}_{R,z}<br />
Or is this also wrong?
As far as what you suggested, do you mean to evaluate something like H \mid \uparrow \uparrow \rangle ?
Using H of what I worte above that would be:
<br /> H \mid \uparrow_L \uparrow_R \rangle =B \left( \begin{array}{ccc} 1 &amp; 0 \\ 0 &amp; -1 \end{array} \right)_L \left(\begin{array}{c} 1\\ 0 \\\end{array}\right)_L <br /> + B \left( \begin{array}{ccc} 1 &amp; 0 \\ 0 &amp; -1 \end{array} \right)_R \left(\begin{array}{c} 1\\ 0 \\\end{array}\right)_R \\<br /> + J \left( \begin{array}{ccc} 0 &amp; 1 \\ 1 &amp; 0 \end{array} \right)_L \left(\begin{array}{c} 1\\ 0 \\\end{array}\right)_L \left( \begin{array}{ccc} 0 &amp; 1 \\ 1 &amp; 0 \end{array} \right)_R\left(\begin{array}{c} 1\\ 0 \\\end{array}\right)_R<br /> + J \left( \begin{array}{ccc} 0 &amp; -i \\ i &amp; 0 \end{array} \right)_L \left(\begin{array}{c} 1\\ 0 \\\end{array}\right)_L \left( \begin{array}{ccc} 0 &amp; -i \\ i &amp; 0 \end{array} \right)_R\left(\begin{array}{c} 1\\ 0 \\\end{array}\right)_R<br /> + J \left( \begin{array}{ccc} 1 &amp; 0 \\ 0 &amp; -1 \end{array} \right)_L \left(\begin{array}{c} 1\\ 0 \\\end{array}\right)_L \left( \begin{array}{ccc} 1 &amp; 0 \\ 0 &amp; -1 \end{array} \right)_R\left(\begin{array}{c} 1\\ 0 \\\end{array}\right)_R<br />

This will be I think:
<br /> H \mid \uparrow_L \uparrow_R \rangle = \left(\begin{array}{c} B\\ 0 \\\end{array}\right)_L + \left(\begin{array}{c} B\\ 0 \\\end{array}\right)_R<br /> + J\left(\begin{array}{c} 0\\ 1 \\\end{array}\right)_L \left(\begin{array}{c} 0\\ 1 \\\end{array}\right)_R<br /> + J\left(\begin{array}{c} 0\\ i \\\end{array}\right)_L \left(\begin{array}{c} 0\\ i \\\end{array}\right)_R<br /> + J\left(\begin{array}{c} 1\\ 0 \\\end{array}\right)_L \left(\begin{array}{c} 1\\ 0 \\\end{array}\right)_R<br />

Or am I going completely off-track? And what should I do with it?
 
You are going a bit off track. You cannot have a state containing only one of the spins as your first terms do.
 
  • Like
Likes barefeet
Where do I go wrong? Is my expression for the Hamiltonian(first line) at least correct?
And am I missing an identity operator in the expressions and is B S_{L,z} actually B S_{L,z} 1\!\!1_R. But that wouldn't change much.
Then:
<br /> H \mid \uparrow_L \uparrow_R \rangle = \left(\begin{array}{c} B\\ 0 \\\end{array}\right)_L\left(\begin{array}{c} 1\\ 0 \\\end{array}\right)_R + \left(\begin{array}{c} 1\\ 0 \\\end{array}\right)_L\left(\begin{array}{c} B\\ 0 \\\end{array}\right)_R<br /> + J\left(\begin{array}{c} 0\\ 1 \\\end{array}\right)_L \left(\begin{array}{c} 0\\ 1 \\\end{array}\right)_R<br /> + J\left(\begin{array}{c} 0\\ i \\\end{array}\right)_L \left(\begin{array}{c} 0\\ i \\\end{array}\right)_R<br /> + J\left(\begin{array}{c} 1\\ 0 \\\end{array}\right)_L \left(\begin{array}{c} 1\\ 0 \\\end{array}\right)_R<br />
 
  • #10
You must use two spin basis functions. Use the basis you mention in the question.
Treat the hamiltonian term by term.
What is B(Sz1+Sz2)|++> ?
 
  • #11
barefeet said:
You mean like
barefeet said:
<br /> H_x = J\mathbf{S}_{L,x} \mathbf{S}_{R,x} \\<br /> H_y = J\mathbf{S}_{L,y} \mathbf{S}_{R,y} \\<br /> H_z = B(\mathbf{S}_{L,z} + \mathbf{S}_{R,z}) + J\mathbf{S}_{L,z} \mathbf{S}_{R,z}<br />
?
If H_x etc are just names and not components of a vector as the notation suggests, this is ok.
Use ladder operators.
 
  • #12
Ah ok so I have to construct H as:
<br /> H = \left( \begin{array}{ccc}<br /> \langle \uparrow \uparrow \mid H \mid \uparrow \uparrow \rangle &amp; \langle \uparrow \uparrow \mid H \mid \uparrow \downarrow \rangle &amp; \langle \uparrow \uparrow \mid H \mid \downarrow \uparrow \rangle &amp; \langle \uparrow \uparrow \mid H \mid \downarrow \downarrow \rangle\\<br /> \langle \uparrow \downarrow \mid H \mid \uparrow \uparrow \rangle &amp; \langle \uparrow \downarrow \mid H \mid \uparrow \downarrow \rangle &amp; \langle \uparrow \downarrow \mid H \mid \downarrow \uparrow \rangle &amp; \langle \uparrow \downarrow \mid H \mid \downarrow \downarrow \rangle\\ <br /> \langle \downarrow \uparrow \mid H \mid \uparrow \uparrow \rangle &amp; \langle \downarrow \uparrow \mid H \mid \uparrow \downarrow \rangle &amp; \langle \downarrow \uparrow \mid H \mid \downarrow \uparrow \rangle &amp; \langle \downarrow \uparrow \mid H \mid \downarrow \downarrow \rangle\\ <br /> \langle \downarrow \downarrow \mid H \mid \uparrow \uparrow \rangle &amp; \langle \downarrow \downarrow \mid H \mid \uparrow \downarrow \rangle &amp; \langle \downarrow \downarrow \mid H \mid \downarrow \uparrow \rangle &amp; \langle \downarrow \downarrow \mid H \mid \downarrow \downarrow \rangle\\ <br /> \end{array} \right)<br />
Using the ladder operators S_x = \frac{1}{2}(S_+ + S_-) \quad S_y = \frac{1}{2i}(S_+ - S_-) and:
<br /> S_z \mid \uparrow \rangle = \frac{h}{2} \mid \uparrow \rangle \quad \quad S_z \mid \downarrow \rangle = \frac{-h}{2} \mid \downarrow \rangle \\<br /> S_+ \mid \uparrow \rangle = 0 \quad \quad S_+ \mid \downarrow \rangle = h \mid \uparrow \rangle \\<br /> S_- \mid \uparrow \rangle = h \mid \downarrow \rangle \quad \quad S_- \mid \downarrow \rangle = 0<br />

I get:
<br /> H \mid \uparrow \uparrow \rangle = g\mu_BBh \mid \uparrow \uparrow \rangle + \frac{Jh^2}{4} \mid \uparrow \uparrow \rangle + \frac{Jh^2}{2} \mid \downarrow \downarrow \rangle + \frac{Jh^2}{2i} \mid \downarrow \downarrow \rangle \\<br /> H \mid \uparrow \downarrow \rangle = 0 + \frac{-Jh^2}{4} \mid \uparrow \downarrow \rangle + \frac{Jh^2}{2} \mid \downarrow \uparrow \rangle + \frac{-Jh^2}{2i} \mid \downarrow \uparrow \rangle \\<br /> H \mid \downarrow \uparrow \rangle = 0 + \frac{-Jh^2}{4} \mid \downarrow \uparrow \rangle + \frac{Jh^2}{2} \mid \uparrow \downarrow \rangle + \frac{-Jh^2}{2i} \mid \uparrow \downarrow \rangle \\<br /> H \mid \downarrow \downarrow \rangle = g\mu_BBh \mid \downarrow \downarrow \rangle + \frac{Jh^2}{4} \mid \downarrow \downarrow \rangle + \frac{Jh^2}{2} \mid \uparrow \uparrow \rangle + \frac{Jh^2}{2i} \mid \uparrow \uparrow \rangle<br />

This gives me the following matrix:
<br /> H = <br /> \left( \begin{array}{ccc}<br /> g\mu_BB + \frac{Jh^2}{4} &amp; 0 &amp; 0 &amp; \frac{Jh^2}{2} + \frac{Jh^2}{2i} \\<br /> 0 &amp; \frac{-Jh^2}{4} &amp; \frac{Jh^2}{2} + \frac{-Jh^2}{2i} &amp; 0\\<br /> 0 &amp; \frac{Jh^2}{2} + \frac{-Jh^2}{2i} &amp; \frac{-Jh^2}{4} &amp; 0\\<br /> \frac{Jh^2}{2} + \frac{Jh^2}{2i} &amp; 0 &amp; 0 &amp; g\mu_BB + \frac{Jh^2}{4}<br /> \end{array} \right)<br />

This gets me in the right direction but is still wrong in the off diagonal terms.
 
  • #13
You are definitely getting closer.
Write S1xS2x+S1y+S2y in trems of S+ and S-.
What is (S1z+S2z)|--> ?
 
  • #14
The trace of all operators in your hamiltonian is zero,
so the trace of H should be zero. Check if it is.
 
  • Like
Likes barefeet
  • #15
Ah I see, I am missing a factor \frac{1}{2} in the S_x term and a \frac{1}{2i} in the S_y term
So it will be:
<br /> H \mid \uparrow \uparrow \rangle = g\mu_BhBh \mid \uparrow \uparrow \rangle + \frac{Jh^2}{4} \mid \uparrow \uparrow \rangle + \frac{Jh^2}{4} \mid \downarrow \downarrow \rangle - \frac{Jh^2}{4} \mid \downarrow \downarrow \rangle \\<br /> H \mid \uparrow \downarrow \rangle = 0 + \frac{-Jh^2}{4} \mid \uparrow \downarrow \rangle + \frac{Jh^2}{4} \mid \downarrow \uparrow \rangle + \frac{Jh^2}{4} \mid \downarrow \uparrow \rangle \\<br /> H \mid \downarrow \uparrow \rangle = 0 + \frac{-Jh^2}{4} \mid \downarrow \uparrow \rangle + \frac{Jh^2}{4} \mid \uparrow \downarrow \rangle + \frac{Jh^2}{4} \mid \uparrow \downarrow \rangle \\<br /> H \mid \downarrow \downarrow \rangle = - g\mu_BhBh \mid \downarrow \downarrow \rangle + \frac{Jh^2}{4} \mid \downarrow \downarrow \rangle +\frac{Jh^2}{4} \mid \uparrow \uparrow \rangle - \frac{Jh^2}{4} \mid \uparrow \uparrow \rangle<br />

Giving the matrix:
<br /> H =<br /> \left( \begin{array}{ccc}<br /> g\mu_BhB + \frac{Jh^2}{4} &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; \frac{-Jh^2}{4} &amp; \frac{Jh^2}{2} &amp; 0\\<br /> 0 &amp; \frac{Jh^2}{2} &amp; \frac{-Jh^2}{4} &amp; 0\\<br /> 0 &amp; 0 &amp; 0 &amp; - g\mu_BhB + \frac{Jh^2}{4}<br /> \end{array} \right)<br />
 
Last edited:
  • #16
The matrix is close to the correct answer. The equations differ from it.
You should write S1xS2x+S1yS2y in terms of S1+ etc.
 
  • #17
Ok,
<br /> S_{x,L}S_{x,R} + S_{y,L}S_{y,R} = \frac{1}{2}(S_+ + S_-)_L\frac{1}{2}(S_+ + S_-)_R + \frac{1}{2i}(S_+ - S_-)_L\frac{1}{2i}(S_+ - S_-)_R \\<br /> =\frac{1}{2}(S_{+,L}S_{-,R} + S_{-,L}S_{+,R} ) <br />
But I still get the same answer. Whiech term exactly should I recheck?
 
  • #18
Are you sure about the final factor 1/2 ?
 
  • #19
I guess:
<br /> S_{x,L}S_{x,R} + S_{y,L}S_{y,R} = \frac{1}{2}(S_+ + S_-)_L\frac{1}{2}(S_+ + S_-)_R + \frac{1}{2i}(S_+ - S_-)_L\frac{1}{2i}(S_+ - S_-)_R \\<br /> = \frac{1}{4} ( S_+S_+ + S_+S_- + S_-S_+ + S_-S_- - S_+S_+ + S_+S_- + S_+S_- - S_-S_- )<br /> =\frac{1}{2}(S_{+,L}S_{-,R} + S_{-,L}S_{+,R})<br />
Or do you mean another 1/2 in the matrix?
 
  • #20
barefeet said:
Ah I see, I am missing a factor \frac{1}{2} in the S_x term and a \frac{1}{2i} in the S_y term
So it will be:
<br /> H \mid \uparrow \uparrow \rangle = g\mu_BhBh \mid \uparrow \uparrow \rangle + \frac{Jh^2}{4} \mid \uparrow \uparrow \rangle + \frac{Jh^2}{4} \mid \downarrow \downarrow \rangle - \frac{Jh^2}{4} \mid \downarrow \downarrow \rangle \\<br /> H \mid \uparrow \downarrow \rangle = 0 + \frac{-Jh^2}{4} \mid \uparrow \downarrow \rangle + \frac{Jh^2}{4} \mid \downarrow \uparrow \rangle + \frac{Jh^2}{4} \mid \downarrow \uparrow \rangle \\<br /> H \mid \downarrow \uparrow \rangle = 0 + \frac{-Jh^2}{4} \mid \downarrow \uparrow \rangle + \frac{Jh^2}{4} \mid \uparrow \downarrow \rangle + \frac{Jh^2}{4} \mid \uparrow \downarrow \rangle \\<br /> H \mid \downarrow \downarrow \rangle = - g\mu_BhBh \mid \downarrow \downarrow \rangle + \frac{Jh^2}{4} \mid \downarrow \downarrow \rangle +\frac{Jh^2}{4} \mid \uparrow \uparrow \rangle - \frac{Jh^2}{4} \mid \uparrow \uparrow \rangle<br />

Giving the matrix:
<br /> H =<br /> \left( \begin{array}{ccc}<br /> g\mu_BhB + \frac{Jh^2}{4} &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; \frac{-Jh^2}{4} &amp; \frac{Jh^2}{2} &amp; 0\\<br /> 0 &amp; \frac{Jh^2}{2} &amp; \frac{-Jh^2}{4} &amp; 0\\<br /> 0 &amp; 0 &amp; 0 &amp; - g\mu_BhB + \frac{Jh^2}{4}<br /> \end{array} \right)<br />
This is correct.
 
Back
Top