Quantum field in curved space-time

  • #1
Gary Venter
16
3
TL;DR Summary
Quick question about relationship between QM and general relativity
The wave function includes coordinates for position in space. For two distant but correlated particles, do their distances and paths of movement used in the wave function follow the curved space-time of general relativity, or is Euclidean distance assumed in QM?
 
Physics news on Phys.org
  • #2
I support neither of your idea : Eucledian distance does not fit with GR and classical curved space-time doe s not seem fit with QM. If you could get an answer, you would be honerd as a pioneer of quamtum gravity.
 
  • Skeptical
Likes gentzen
  • #3
Gary Venter said:
The wave function includes coordinates for position in space.
Here you are using non-relativistic QM.

Gary Venter said:
For two distant but correlated particles, do their distances and paths of movement used in the wave function follow the curved space-time of general relativity
Here you are trying to use relativity, which means you can't use non-relativistic QM. You have to use quantum field theory, and in curved spacetime to boot, in which there is no such thing as a "wave function". That's not how QFT models things.
 
  • Like
Likes PeroK
  • #4
Gary Venter said:
their distances and paths of movement used in the wave function
There are no such things even in non-relativistic QM. The wave function does not describe "distances and paths of movement".
 
  • #5
Gary Venter said:
TL;DR Summary: Quick question about relationship between QM and general relativity

or is Euclidean distance assumed in QM?
No. In quantum theory on curved spacetime, a curved geometry is used.
 
Last edited:
  • Like
Likes pines-demon

Similar threads

Replies
61
Views
4K
Replies
1
Views
901
Replies
11
Views
552
Replies
25
Views
2K
Replies
4
Views
2K
Replies
36
Views
4K
Replies
7
Views
2K
Back
Top