Question about a harmonic oscillator integral

Heath Watts
Messages
2
Reaction score
0
Hi,
I'm trying to learn quantum physics (chemistry) on my own so that my work with Gaussian and Q-Chem for electronic structural modeling is less of a black box for me. I've reached the harmonic oscillator point in McQuarrie's Quantum Chemistry book and I'm having trouble justifying a step in his math. It's the integral of force with respect to x.

Integrate[m*(d2x/dt2), dx]
This says integrate the second derivative of time with respect to t for the integration variable x.

Changing the variable of integration to time gives:

Integrate[m*(d2x/dt2)*(dt/dt), dx]
or
Integrate[m*(d2x/dt2)*(dx/dt), dt]

Then something occurs here:
Integrate[m*(d(dx/dt)/dt)*(dx/dt), dt]

Integrate[(m/2)*d((dx/dt)*(dx/dt))/dt, dt]

Integrate[(m/2)*d((dx/dt)^2)/dt, dt]

What calculus rule have I forgotten that says that
(d2x/dt2)*(dx/dt)=(1/2)*d((dx/dt)^2)/dt

I can't seem to find it in any of my old textbooks or online. I hope that my notation is clear. I appreciate your help. If you can direct me to a website that explains this rule, I'd appreciate it.
Thanks,
Heath
 
Physics news on Phys.org
If you work backwards it's easy to see: it's just the chain rule!

\frac{d}{dt} \left(\frac{1}{2} \left( \frac{dx}{dt}\right)^2 \right) = 2 \times \left( \frac{1}{2} \frac{dx}{dt} \right) \times \frac{d}{dt} \frac{dx}{dt} = \frac{dx}{dt} \frac{d^2x}{dt^2}

Substituting \frac{dx}{dt} = f(t) maybe helps:
\frac{d}{dt} \left( \frac{1}{2} \left( f(t) \right)^2 \right) = 2 \times \left(\frac{1}{2} f(t) \right) \times \frac{df}{dt} = f(t) \frac{df}{dt}

Or even easier in 'words':
The derivative of f^2 is 2f \, f'. Of course, we don't want the two, so we use 1/2 in front of the f^2 term (which doesn't change the differentiation process since it's a constant).It's a pretty common differentiation 'trick' .
 
Last edited:
Thanks very much Nick. The chain rule! How embarrassing. :blushing:
 
I read Hanbury Brown and Twiss's experiment is using one beam but split into two to test their correlation. It said the traditional correlation test were using two beams........ This confused me, sorry. All the correlation tests I learnt such as Stern-Gerlash are using one beam? (Sorry if I am wrong) I was also told traditional interferometers are concerning about amplitude but Hanbury Brown and Twiss were concerning about intensity? Isn't the square of amplitude is the intensity? Please...
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA

Similar threads

Back
Top