- #1
- 4,807
- 32
If M is a topological manifold, a smooth structure A (or maximal atlas) on M is a set of smoothly compatible charts of M that is maximal in the sense that if we consider any chart that is not in A, then there is some chart in A with whom it is not smoothly compatible.
Now, it is a fact that some topological manifolds admit no smooth structure and others admit many distinct ones. One could ask how many distinct smooth structures exists on a given manifold, but differential topologists choose to classify the smooth structures on a manifold up to diffeomorphism (meaning that two smooth structures A, A' are diffeomorphic if there exists a diffeomorphism F:(M,A)-->(M,A')). Could someone explain this choice to me?
Because what is a smooth structure if not a way to make sense of differentiability of map on a topological space? So at first I thought that diffeomorphic smooth structures admit the same smooth maps (In the sense that for any smooth manifold N, a map G:(M,A)-->N is smooth if and only if G(M,A')-->N is smooth). But this is not the case, for the following reason:
Lemma: Suppose that A, A' are two smooth differentiable structures on M that admit the same smooth maps. Then A = A'.
Proof: To see this, consider (U,f) a chart on (M,A). Then f must be smooth as a map on (M,A'). This means that for any chart (V,g) in (M,A'), the coordinate representation of f, namely f o g^-1, is smooth. Inversely, given a chart (V,g) in (M,A'), g must be smooth on (M,A), so for any chart (U,f) in (M,A), the coordinate representation of g, namely g o f^-1, is smooth. So every pair of charts (U,f), (V,g) in A and A' respectively are smoothly compatible. This means that A=A'. QED
If it were true that two diffeomorphic smooth structures admit the same smooth maps, then there would not exist distinct diffeomorphic smooth structures, which is absurd (see 2nd paragraph).
Now, it is a fact that some topological manifolds admit no smooth structure and others admit many distinct ones. One could ask how many distinct smooth structures exists on a given manifold, but differential topologists choose to classify the smooth structures on a manifold up to diffeomorphism (meaning that two smooth structures A, A' are diffeomorphic if there exists a diffeomorphism F:(M,A)-->(M,A')). Could someone explain this choice to me?
Because what is a smooth structure if not a way to make sense of differentiability of map on a topological space? So at first I thought that diffeomorphic smooth structures admit the same smooth maps (In the sense that for any smooth manifold N, a map G:(M,A)-->N is smooth if and only if G(M,A')-->N is smooth). But this is not the case, for the following reason:
Lemma: Suppose that A, A' are two smooth differentiable structures on M that admit the same smooth maps. Then A = A'.
Proof: To see this, consider (U,f) a chart on (M,A). Then f must be smooth as a map on (M,A'). This means that for any chart (V,g) in (M,A'), the coordinate representation of f, namely f o g^-1, is smooth. Inversely, given a chart (V,g) in (M,A'), g must be smooth on (M,A), so for any chart (U,f) in (M,A), the coordinate representation of g, namely g o f^-1, is smooth. So every pair of charts (U,f), (V,g) in A and A' respectively are smoothly compatible. This means that A=A'. QED
If it were true that two diffeomorphic smooth structures admit the same smooth maps, then there would not exist distinct diffeomorphic smooth structures, which is absurd (see 2nd paragraph).