- #36
jkl71
- 92
- 11
You may find this useful, but as a warning in some ways this analogy is a bit deceptive, I’ll explain why later.
Imagine two people are at the Earth’s equator, fairly close together and both decide to walk due North (their paths are lines of longitude and are geodesics). They start off on parallel paths and both are traveling on straight lines. However, if they make careful measurements they’ll find that they are approaching each other. From the outside perspective it’s pretty clear what’s happening, the surface of the Earth is curved and parallel lines can converge. If the people walking don’t know about this, they might conclude there is a force causing them to accelerate towards each other.
In general relativity bodies that are not acted upon by any force (in this context by force I mean what Newton might call a non-gravitational force) travel on space-time geodesics. Since space-time can be curved, initially parallel geodesics can converge. So two observers moving on geodesics can seem to accelerate towards each other although neither is accelerating. For example, a body in free fall in the Earth’s gravitational field will seem to accelerate towards the Earth, but a better perspective is that the world lines of this body an the Earth, which are both geodesics, are converging because of space-time curvature.
Why is the analogy a bit deceptive? In the first case it’s just a curved spatial surface and time is taken as an external parameter (basically it’s the usual Newtonian point-of-view). In the case of GR, it’s space-time itself that’s curved and there is no external time.
Also consider a person standing on the surface of the Earth. From the Newtonian perspective one would usually say that person is not accelerating. From the GR perspective it’s more natural to say that the person is accelerating, in other words deviating from a space-time geodesic, because of the force from the ground on their feet (imagine a rocket in deep space traveling at a constant acceleration).
Imagine two people are at the Earth’s equator, fairly close together and both decide to walk due North (their paths are lines of longitude and are geodesics). They start off on parallel paths and both are traveling on straight lines. However, if they make careful measurements they’ll find that they are approaching each other. From the outside perspective it’s pretty clear what’s happening, the surface of the Earth is curved and parallel lines can converge. If the people walking don’t know about this, they might conclude there is a force causing them to accelerate towards each other.
In general relativity bodies that are not acted upon by any force (in this context by force I mean what Newton might call a non-gravitational force) travel on space-time geodesics. Since space-time can be curved, initially parallel geodesics can converge. So two observers moving on geodesics can seem to accelerate towards each other although neither is accelerating. For example, a body in free fall in the Earth’s gravitational field will seem to accelerate towards the Earth, but a better perspective is that the world lines of this body an the Earth, which are both geodesics, are converging because of space-time curvature.
Why is the analogy a bit deceptive? In the first case it’s just a curved spatial surface and time is taken as an external parameter (basically it’s the usual Newtonian point-of-view). In the case of GR, it’s space-time itself that’s curved and there is no external time.
Also consider a person standing on the surface of the Earth. From the Newtonian perspective one would usually say that person is not accelerating. From the GR perspective it’s more natural to say that the person is accelerating, in other words deviating from a space-time geodesic, because of the force from the ground on their feet (imagine a rocket in deep space traveling at a constant acceleration).