- #1
PRB147
- 128
- 0
In table of integrals, series and products 7ed. by Gradshtyn and Ryzhik,
in page 1028, there is an expression:
[tex]D_p(z)=\int_{-\infty}^{\infty}x^p e^{-2x^2+2i xz}dx,~~(Re~ p>-1; ~for~ x<0, ~arg x^p=p\pi i)[/tex]
what is the meaning of [tex]for~ x<0, ~arg x^p=p\pi i)[/tex]
in page 1028, there is an expression:
[tex]D_p(z)=\int_{-\infty}^{\infty}x^p e^{-2x^2+2i xz}dx,~~(Re~ p>-1; ~for~ x<0, ~arg x^p=p\pi i)[/tex]
what is the meaning of [tex]for~ x<0, ~arg x^p=p\pi i)[/tex]
Last edited: