Question about right hand rule (magnetism)

AI Thread Summary
The right hand rule (RHR) is not limited to situations where the magnetic field, force, and current vectors are orthogonal; it can be applied in various configurations. The formula for magnetic force, F = qvB sin(theta), indicates that the angle between the velocity of a charged particle and the magnetic field can vary, not necessarily being 90 degrees. In scenarios like a current-carrying wire, the force acting on it can also occur at different angles. Only the component of the force that is orthogonal to the current contributes to the magnetic field. Understanding these relationships expands the applicability of the right hand rule beyond strict orthogonality.
gokuls
Messages
35
Reaction score
0
Is the right hand rule for determining the direction of the magnetic field, force, and current only used when the aforementioned vectors are orthogonal to each other? Or, can the RHR be used in other cases as well?
 
Physics news on Phys.org
When aren't they orthogonal?
 
They're not always orthogonal I think. The formula for the magnetic force on a charged particle:
F = qvB sin(theta). The sin is the angle between the velocity vector of the charged particle and the magnetic field, and it doesn't have to be 90.
 
Example: A wire with current going through it has a force applied to it which makes it move. The force could be at any angle but only the portion of the force which is orthogonal to the current will make a magnetic field (which is orthogonal to both the current and the portion of force which is orthogonal to the current.

I hope that makes sense.
 
Thread 'Griffith, Electrodynamics, 4th Edition, Example 4.8. (Second part)'
I am reading the Griffith, Electrodynamics book, 4th edition, Example 4.8. I want to understand some issues more correctly. It's a little bit difficult to understand now. > Example 4.8. Suppose the entire region below the plane ##z=0## in Fig. 4.28 is filled with uniform linear dielectric material of susceptibility ##\chi_e##. Calculate the force on a point charge ##q## situated a distance ##d## above the origin. In the page 196, in the first paragraph, the author argues as follows ...
Thread 'Inducing EMF Through a Coil: Understanding Flux'
Thank you for reading my post. I can understand why a change in magnetic flux through a conducting surface would induce an emf, but how does this work when inducing an emf through a coil? How does the flux through the empty space between the wires have an effect on the electrons in the wire itself? In the image below is a coil with a magnetic field going through the space between the wires but not necessarily through the wires themselves. Thank you.
Back
Top