Question about Spherical Metric and Approximations

AI Thread Summary
The discussion centers on deriving the metric for a colony of "eskimo mites" living at the north pole, as presented in A. Zee's "Einstein Gravity in a Nutshell." The metric provided is non-diagonal and approximates a flat space for small coordinates. The participants explore the relationship between mite coordinates and spherical coordinates, emphasizing the need for accurate partial derivatives and the application of Taylor series for simplification. A key realization is the correction of the sine function's relationship to the mite coordinates, which leads to successful metric derivation. The problem highlights the challenge of second-order deviations in metric calculations despite achieving local Euclidean metrics.
willballard137
Messages
2
Reaction score
0

Homework Statement



This is Problem 2 from Chapter 1, Section V of A. Zee's Einstein Gravity in a Nutshell. Zee asks us to imagine a colony of "eskimo mites" that live at the north pole. The geometers of the colony have measured the following metric of their world to second order (with the radius of the sphere equal to 1):

$$ ds^{2}=\left (1-\frac{y^{2}}{3} \right )dx^{2}+\left (1-\frac{x^{2}}{3} \right )dy^{2}+\frac{2}{3}xy\, dx\, dy+\cdots $$

Zee states: "For ## x,y \ll 1 ##, the space is flat and as Euclidean as it could be. But note that in the second order the metric is not diagonal."

The problem asks us to derive the above metric, given that we know (1) that the mite coordinates ## (x,y) ## are related to the usual spherical coordinates ## x = \theta \cos \phi ## and ## y=\theta \sin \phi ## and (2) that the metric for spherical coordinates is:

$$ ds^{2}=d\theta^{2}+\sin^{2}\theta\, d\phi^{2}. $$

Homework Equations



I believe that the most important equation allows us to calculate the metric in the primed coordinates ## (x,y) ## given the metric in the unprimed coordinates ## (\theta,\phi) ##:

$$ {g}'_{\rho\sigma}({x}')=g_{\mu\nu}(x)\frac{\partial x^{\mu} }{\partial {x}'^{\rho}}\frac{\partial x^{\nu} }{\partial {x}'^{\sigma}}. $$

I believe that I also need to find expressions for the unprimed coordinates as a function of the primed coordinates. In these equations, I assume that the radius of the sphere is 1.

$$ \sin \theta=\frac{\sqrt{x^{2}+y^{2}}}{r}=\sqrt{x^{2}+y^{2}} .$$

$$ \tan \phi=\frac{x}{y}.$$

The Attempt at a Solution


[/B]
So far, I have been unable to calculate ## {g}'_{xx} ##, which according to the problem statement should be (to second order) ## 1-\frac{y^{2}}{3} ##. According to our general relation for calculating the primed metric, I have:

$$ {g}'_{xx}={g}_{\theta\theta}\left (\frac{\partial\theta}{\partial x} \right )^{2}+g_{\phi\phi}\left (\frac{\partial\phi}{\partial x} \right )^{2} .$$

Then taking the (I hope) correct partial derivatives from above and substitute in some trigonometric identities.

$$ \frac{\partial\theta}{\partial x}=\frac{x}{\sqrt{x^{2}+y^{2}}}\cdot \frac{1}{\cos\theta}=\frac{x}{\sqrt{x^{2}+y^{2}}\sqrt{1-x^{2}-y^{2}}} .$$

$$ \frac{\partial\phi}{\partial x}=-\frac{y}{x^{2}}\cos^{2}\phi=-\frac{y}{x^{2}}\cdot \frac{x^{2}}{x^{2}+y^{2}}=-\frac{y}{x^{2}+y^{2}} $$

I can now plug these results back into my expression for ## {g}'_{xx} ##:

$$ {g}'_{xx}=\frac{x^{2}}{(x^{2}+y^{2})(1-x^{2}-y^{2})}+\sin^2\theta\frac{y^{2}}{(x^{2}+y^{2})^{2}}. $$

Simple trigonometry tells us that ## \sin^2 \theta = x^{2}+y^{2} ##. Thus I end up with the result, before simplification:

$$ {g}'_{xx}=\frac{x^{2}}{(x^{2}+y^{2})(1-x^{2}-y^{2})}+\frac{y^{2}}{(x^{2}+y^{2})}. $$

I have tried to simplify this to the correct second-order approximation, but cannot get there. It is very well possible that I am approaching this problem from the completely wrong direction. In the following chapter, which provides a brief introduction to Riemann Normal Coordinates, Zee makes use of Taylor Series Powers expansions. However, I was unsure of how to apply those to this problem.

Nonetheless, I take it that this problem emphasizes the fact that we can select coordinates such that the local metric -- for infinitesimal displacements -- is Euclidean to the zeroth order. Moreover, we can remove any first-order terms by careful selection of new coordinates. However, we cannot get rid of the second-order deviations.

I hope this provides enough information for some exterior guidance.
 
Physics news on Phys.org
Welcome to PF!

I believe the mistake is with the equation ## \sin \theta=\sqrt{x^{2}+y^{2}} ##. This would be applicable if the "mite coordinates" ##x## and ##y## obeyed

##x = \sin\theta \cos \phi##
##y = \sin\theta \sin \phi##

But the mite coordinates are given to obey

##x = \theta \cos \phi##
##y = \theta \sin \phi##

If you use this second set of relations, then it seems to work out.
 
Thank you for the suggestion. In addition to that change, I also used the Taylor series ## \sin ^2 \theta = \theta^2 + \frac{1}{3}\theta^4 + ... ## and it worked out.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top