Question about the photoelectric effect

AI Thread Summary
The discussion centers on the efficiency of photodiodes in relation to the photoelectric effect, specifically questioning why photodiodes are not 100% efficient. It highlights that not all photons can cause electron emission, particularly if their wavelength is insufficient or if they miss electrons entirely. The work function of a metal may vary depending on the electron's position within the material. Additionally, photons can be absorbed by the lattice instead of causing emission, dissipating energy as heat. Understanding quantum efficiency is crucial to grasping these concepts fully.
Dima Petrukhin
Messages
10
Reaction score
0
1. The question asks why the photodiode is less than 100% efficient.2. hf=work function+KEmax


3.- I reckon this is as some light will not cause e to be emitted if the wavelength of the light is less the needed.
-Or some photons will not hit any electron.

Is this correct?
Thinking about this question got me wondering if the work function may vary in a metal depending on how 'deep' the electron is in the metal?

And is it possible for a single photon to go through the metal without hitting an electron and not causing emission?

Thanks
 
Physics news on Phys.org
I should say how close the electrons are to +ve metal ions
 
You say "photodiode" but you are describing the photoelectric effect. In a photodiode incoming photons create electron-hole pairs which are then detected as a current. This is not described by the equation hf=work function+KEmax.
Dima Petrukhin said:
And is it possible for a single photon to go through the metal without hitting an electron and not causing emission?
A single photon that does not cause emission does not have to go "through" the material. The photon's energy may be absorbed by the lattice and be dissipated as heat. Read about quantum efficiency here https://en.wikipedia.org/wiki/Quantum_efficiency.
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top