- #1
yungman
- 5,755
- 293
[tex]\hbox { Bessel's equation of order p: }\;x^2y''+xy'+(x^2-p^2)y=0\;\hbox { and let}\;y=\sum_0^{\infty}C_nx^{n+r}[/tex]
[tex]\Rightarrow\; \left[\sum_0^{\infty}C_k(k+r)(k+r-1)x^k+\sum_0^{\infty}C_k(k+r)x^k+\sum_2^{\infty} C_{k-2}x^k-p^2\sum_0^{\infty}C_kx^k\right]x^r\;=\;0[/tex]
[tex]\Rightarrow\; x^r\left[(r^2-p^2)C_0+[(r+1)^2-p^2]C_1 x+\sum_2^{\infty}\left([(k+r)(k+r)-p^2]C_k+C_{k-2}\right)x^k\right]\;=\;0[/tex]
According to the book, all the terms have to be zero for the equation to be zero.
[tex](r^2-p^2)C_0=0\;\Rightarrow r=^+_-p[/tex]
The book also say
[tex][(r+1)^2-p^2]C_1=0\;\Rightarrow C_1=0\;\hbox { because from above, }\;r=^+_-p[/tex]
My problem with this assumption ##C_1=0## is I can just as easy say ##(r+1)^2-p^2=0## and claim ##C_0=0##! This will change the whole equation of the Bessel's equation!
Why do I have to follow the book to let ##C_1=0## which result in all ##C_{2n+1}=0##? Is it just because it is simpler and more convenient this way?
Also, the book just said let ##C_0=\frac {1}{2^p\Gamma(1+p)}## without explaining why. Why?
I know it is for fitting the formula of:
[tex]J_p=\sum_0^{\infty} \frac{(-1)^k}{k! \Gamma(k+p+1)}\left(\frac {x}{2}\right)^{2k+p} [/tex]
But can you just let ##C_0## to be anything?
Thanks
[tex]\Rightarrow\; \left[\sum_0^{\infty}C_k(k+r)(k+r-1)x^k+\sum_0^{\infty}C_k(k+r)x^k+\sum_2^{\infty} C_{k-2}x^k-p^2\sum_0^{\infty}C_kx^k\right]x^r\;=\;0[/tex]
[tex]\Rightarrow\; x^r\left[(r^2-p^2)C_0+[(r+1)^2-p^2]C_1 x+\sum_2^{\infty}\left([(k+r)(k+r)-p^2]C_k+C_{k-2}\right)x^k\right]\;=\;0[/tex]
According to the book, all the terms have to be zero for the equation to be zero.
[tex](r^2-p^2)C_0=0\;\Rightarrow r=^+_-p[/tex]
The book also say
[tex][(r+1)^2-p^2]C_1=0\;\Rightarrow C_1=0\;\hbox { because from above, }\;r=^+_-p[/tex]
My problem with this assumption ##C_1=0## is I can just as easy say ##(r+1)^2-p^2=0## and claim ##C_0=0##! This will change the whole equation of the Bessel's equation!
Why do I have to follow the book to let ##C_1=0## which result in all ##C_{2n+1}=0##? Is it just because it is simpler and more convenient this way?
Also, the book just said let ##C_0=\frac {1}{2^p\Gamma(1+p)}## without explaining why. Why?
I know it is for fitting the formula of:
[tex]J_p=\sum_0^{\infty} \frac{(-1)^k}{k! \Gamma(k+p+1)}\left(\frac {x}{2}\right)^{2k+p} [/tex]
But can you just let ##C_0## to be anything?
Thanks
Last edited: