Question on spring constant w/potential energy

AI Thread Summary
The discussion revolves around a homework problem involving a spring and a mass, focusing on the relationship between the spring's compression distances, D and d. The user is attempting to apply conservation of energy principles to find D, but encounters confusion regarding the spring constant, k, and its calculation in different contexts. The key realization is that the energy equations must account for the mass's kinetic energy during oscillation, which differs from the scenario when the mass is at rest. Ultimately, the distinction between the two states clarifies the correct approach to solving for D in terms of d. Understanding the dynamics of oscillation is essential for accurately applying the conservation of energy in this problem.
yumemirai
Messages
2
Reaction score
0
Hi all. I'm having trouble understanding a homework problem. Here it is...

Homework Statement



The question, from my book, is: "When a mass m sits at rest on a spring, the spring is compressed by a distance d from its undeformed length. Suppose instead tht the mass is released from rest when it barely touches the undeformed spring. Find the distance D that the spring is compressed before it is able to stop the mass. Does D = d?"

In my own words: there is a spring attached to the ground, sticking up vertically. A person holds an object at the top of the spring, in contact with the spring but not compressing it at all (Position 1). The person let's go, and the mass drops, compresses the spring, until the spring stops the mass (Position 2). Then it goes back and forth until it settles (Position 3).

2. Homework Equations / The attempt at a solution

The chapter is "Conservation of Energy" so that's the formula I'm using. I start by finding K, Ugrav and Uel at each position:

Position 1:
K = 0 (velocity = 0)
Ugrav = mg * 0 (we choose the undeformed length of the spring as x = 0)
Uel = 1/2 * k * 02 (again, x = 0)

Position 2:
K = 0 (velocity = 0)
Ugrav = -mgD (we choose the maximum compression before the spring stops the object as x = D. D is downward so we use a negative sign. Our goal is to find D in terms of d.)
Uel = 1/2 * k * D2

Position 3:
K = 0 (velocity = 0)
Ugrav = -mgd
Uel = 1/2 * k * d2

So far, so good, right? Now, the total mechanical energy at one position is equal to that at any other, right? I might have the terminology wrong, but what it means is:

E1 = E2 = E3
∴ K1 + U1 = K2 + U2 = K3 + U3
∴ 0 = 1/2 * k * D2 - mgD = 1/2 * k * d2 - mgd

Now, in order to solve for D in terms of d, I need to eliminate the other unknown: k. I do it like this:

E1 = E3
∴ 0 = 1/2 * k * d2 - mgd
∴ k = 2mg / d

BUT

I can also do this:

Since F = ma, and F = kx
then mg = kx
∴ k = mg / d

I have two different possibilities for k.

According to the book, the k = mg / d result is correct; plugging that into the previous formula using E1 = E2 results in

0 = 1/2 * k * D2 - mgD
mgD = mgD2 / 2d
D = D2 / 2d
2d = D

and that is the answer.

But, if you use k = 2mg / d, then d = D. That's what I'm missing: how do I know what the right way to solve k is? I'm pretty sure I have my formulas and my math right, so is there just a conceptual element that I'm not thinking of? What is it?

Thanks in advance.
 
Physics news on Phys.org
"∴ 0 = 1/2 * k * D2 - mgD = 1/2 * k * d2 - mgd"

You are using conservation of energy on two different problems. One is when the system oscillates. The other is when the system is at rest. During oscillation, the kinetic energy is not zero when it passes the neutral point.
 
Okay, I think I get it... because when I say

1/2 * k * D2 - mgD = 1/2 * k * d2 - mgd

I'm not specifying when we're at "d"... and obviously it will have a velocity as soon as you let go of the object and it passes that point, whereas if you leave the system alone for an hour and let it... settle... or whatever the term is, then it won't have velocity... and this equation can't account for that.

We haven't done anything with oscillation so this bit's foreign to me, but I think I see now.
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
Back
Top