MHB Question on the concept of " Identity "

  • Thread starter Thread starter Mathelogician
  • Start date Start date
  • Tags Tags
    Concept Identity
AI Thread Summary
Van Dalen's approach to axiomatizing 'Identity' aims to provide a more rigorous framework than simply viewing it as a binary predicate. By establishing axioms for identity, he enhances the understanding of its properties and implications within logical systems. The discussion highlights that while identity is represented as a binary predicate, the axioms serve to clarify its role in derivability rather than merely its semantic interpretation. Axioms I2 and I3 can be derived from I1 and I4, emphasizing the interconnectedness of these axioms. Ultimately, the axiomatization strengthens the foundational understanding of identity in logic.
Mathelogician
Messages
35
Reaction score
0
Hi all;
Look at the attached part from Van Dalen's Logic and structure.
What is he doing exactly?
In axiomatizing 'Identity' as he does, what is gained rather than what we had before (i.e., looking at 'Identity' as a binary predicate)?!
Even in the axioms, he is again using a symbol in the language for identity as a binary predicate (i.e., = ) and then he proves the axioms (or says they are provable) in the language. [note that he also proves I3 and I4 that i haven't shown.]
Thanks.
 

Attachments

  • van Dalen.png
    van Dalen.png
    14.2 KB · Views: 123
Physics news on Phys.org
Mathelogician said:
Hi all;
Look at the attached part from Van Dalen's Logic and structure.
What is he doing exactly?
In axiomatizing 'Identity' as he does, what is gained rather than what we had before (i.e., looking at 'Identity' as a binary predicate)?!
Even in the axioms, he is again using a symbol in the language for identity as a binary predicate (i.e., = ) and then he proves the axioms (or says they are provable) in the language. [note that he also proves I3 and I4 that i haven't shown.]
Thanks.

The axiom I4 is rather an axiom sceme ,because for each "t" and for each "φ" we a corresponding axiom.

Axioms I2 and I3 can be proved using axioms I1 and I4
 
Last edited:
Of course they are axiom schemes; but I'm afraid my question is something else!
Thanks.
 
When we are talking about semantics (i.e., $\models$), this section may be considered just as an observation that identity satisfies these axioms. The importance of the axioms comes when we consider the derivability relation $\vdash$ (Definition 1.4.2). Then we have to use special axioms or inference rules to say that $=$ is not just an arbitrary predicate symbol.

solakis said:
Axioms I2 and I3 can be proved using axioms I1 and I4
This is true. It is given as an exercise later in the text. The term version of $I_4$ can also be proved from the formula version.
 
Hello, I'm joining this forum to ask two questions which have nagged me for some time. They both are presumed obvious, yet don't make sense to me. Nobody will explain their positions, which is...uh...aka science. I also have a thread for the other question. But this one involves probability, known as the Monty Hall Problem. Please see any number of YouTube videos on this for an explanation, I'll leave it to them to explain it. I question the predicate of all those who answer this...
I'm taking a look at intuitionistic propositional logic (IPL). Basically it exclude Double Negation Elimination (DNE) from the set of axiom schemas replacing it with Ex falso quodlibet: ⊥ → p for any proposition p (including both atomic and composite propositions). In IPL, for instance, the Law of Excluded Middle (LEM) p ∨ ¬p is no longer a theorem. My question: aside from the logic formal perspective, is IPL supposed to model/address some specific "kind of world" ? Thanks.
I was reading a Bachelor thesis on Peano Arithmetic (PA). PA has the following axioms (not including the induction schema): $$\begin{align} & (A1) ~~~~ \forall x \neg (x + 1 = 0) \nonumber \\ & (A2) ~~~~ \forall xy (x + 1 =y + 1 \to x = y) \nonumber \\ & (A3) ~~~~ \forall x (x + 0 = x) \nonumber \\ & (A4) ~~~~ \forall xy (x + (y +1) = (x + y ) + 1) \nonumber \\ & (A5) ~~~~ \forall x (x \cdot 0 = 0) \nonumber \\ & (A6) ~~~~ \forall xy (x \cdot (y + 1) = (x \cdot y) + x) \nonumber...
Back
Top