- #1
Red_CCF
- 532
- 0
1. Is nucleation a phenomenon that occurs in all phase change (freezing/melting, evaporation/condensation)?
2. I've always read evaporation/condensation described as a liquid-vapour interface phenomenon (water molecules going entering-leaving the interface at equal rates in equilibrium). If evaporation/condensation require nucleation, doesn't this mean that if I lower the temperature of a liquid-vapour system at equilibrium, condensation will occur on the nucleation site in the chamber (and if no nucleation sites are present the system will supersaturate) as opposed just going into the liquid?
3. This is more of a general question about free energy. When there is a phase disequilibrium, I get that the spontaneous process is one where dG < 0. However, since nucleation (and other processes) requires an temporary rise in free energy (to create the nucleus), why do we use the criterion that dG < 0 (a differential) as opposed to ΔG (between initial and final state)?
Thank you
2. I've always read evaporation/condensation described as a liquid-vapour interface phenomenon (water molecules going entering-leaving the interface at equal rates in equilibrium). If evaporation/condensation require nucleation, doesn't this mean that if I lower the temperature of a liquid-vapour system at equilibrium, condensation will occur on the nucleation site in the chamber (and if no nucleation sites are present the system will supersaturate) as opposed just going into the liquid?
3. This is more of a general question about free energy. When there is a phase disequilibrium, I get that the spontaneous process is one where dG < 0. However, since nucleation (and other processes) requires an temporary rise in free energy (to create the nucleus), why do we use the criterion that dG < 0 (a differential) as opposed to ΔG (between initial and final state)?
Thank you