MHB Questions regarding writing equations when given graphs

  • Thread starter Thread starter mikea2424
  • Start date Start date
  • Tags Tags
    Graphs Writing
AI Thread Summary
The discussion focuses on solving equations for rational functions based on given graphs. The first graph indicates a single zero at x=1, a y-intercept at (0,-1), and vertical asymptotes at x=±2, leading to the function f(x)=a(x-1)/(b(x+2)(x-2)^2). The second graph has a zero at x=1 with even multiplicity, vertical asymptotes at x=±3, and requires determining the horizontal asymptote and the correct squaring of factors in the denominator. The final function derived for the second graph is f(x)=-54(x-1)^2/(5(x+3)(x-3)^2), with constants a and b adjusted based on intercepts. Understanding the behavior near vertical asymptotes and the degrees of the numerator and denominator is crucial for these equations.
mikea2424
Messages
2
Reaction score
0
Hello,

I'm studying for a test this Friday and I have two problems that have completely stumped me. I'm not sure how to solve either. Any help would be greatly appreciated.

View attachment 7234

View attachment 7235
 

Attachments

  • 1.jpg
    1.jpg
    6.7 KB · Views: 121
  • 2.jpg
    2.jpg
    7.3 KB · Views: 114
Mathematics news on Phys.org
http://mathhelpboards.com/attachments/pre-calculus-21/7234d1503462274-questions-regarding-writing-equations-when-given-graphs-1-jpg

you should know these are both rational functions ... I leave the second graph for you to try.

for the first graph ...
(1) single zero at $x=1$
(2) y-intercept at $(0,-1)$
(3) horizontal asymptote appears to be $y=0$
(4) vertical asymptotes at $x=\pm2$, with the graph $\to +\infty$ for asymptote at $x=2$

$f(x)=\dfrac{a(x-1)}{b(x+2)(x-2)^2}$, where $a$ and $b$ are constants

$f(0)=-1=-\dfrac{a}{8b} \implies a=8b$. To fix $a$ and $b$ requires another point on the graph. I'm not going to try and eyeball another point, so to keep it simple, let $b=1$ ...
 
Thank you very much for replying to my original post.
View attachment 7238

I know that there is a zero at x=1. I know this zero touches the x-axis meaning that it is an even multiplicity. So the top of the fraction should look like (x-1)^2. The vertical asymptotes are x= \pm3. So the bottom of the fraction looks like (x+3)(x-3). This is where I get confused..visibly I can't tell what the horizontal asymptote is. I also am unsure which of the bottom factors I am to square, if any at all. From my notes I can gather that if the parabola goes downward as well as the curves then I am to square one of the factors on the bottom. I have tried squaring each, one at a time and input my equation into Desmos with no luck. As of right now all I know for sure is:

a((x-1)^2)/((x+3)(x-3))
 

Attachments

  • 2.jpg
    2.jpg
    7.3 KB · Views: 108
The fact there is a horizontal asymptote tells you (numerator degree) < (denominator degree)

As of right now all I know for sure is:

a((x-1)^2)/((x+3)(x-3))

note the function's behavior near the vertical asymptote $x = 3$ indicates the value $(x-3)$ in the denominator is squared ,,,

$f(x) = \dfrac{a(x-1)^2}{b(x+3)(x-3)^2}$

$f(0) = -0.4 \implies \dfrac{a}{27b} = -\dfrac{2}{5} \implies b = -\dfrac{5a}{54}$

once again, not having a second point on the curve other than an x or y intercept ...

let $a = 1 \implies b = -\dfrac{5}{54}$ ...

$f(x) = -\dfrac{54(x-1)^2}{5(x+3)(x-3)^2}$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top