MHB Rational Inequalities: Solve & Understand | Math

AI Thread Summary
The discussion focuses on solving the inequality \( \frac{1}{x} > 2 \) by analyzing different cases based on the sign of \( x \). It emphasizes the importance of considering the direction of the inequality when multiplying by a variable, particularly when \( x \) is negative. The solution is derived by determining intervals: for \( x > 0 \), the valid range is \( 0 < x < \frac{1}{2} \), while no values for \( x < 0 \) satisfy the inequality. The method involves checking values within the identified intervals to confirm which satisfy the original inequality. Ultimately, the conclusion is that the solution set is \( 0 < x < \frac{1}{2} \).
Achi_kun
Messages
5
Reaction score
0
E5C700FB-2211-45B3-8368-F2318DAF4F6B.jpeg
A1B4D6DC-C9F9-45EB-A985-E49539667A1B.jpeg
 
Mathematics news on Phys.org
Uhh ... fill in the blanks? Have you worked on any of these?
 
skeeter said:
Uhh ... fill in the blanks? Have you worked on any of these?
Idk how the solution works
 
for $\dfrac{1}{x} > 2$

step 1. $\dfrac{1}{x} - \dfrac{2}{1} > 0$

combine the two fractions by using a common denominator
 
Personally, I wouldn't do it that say.
From $\frac{1}{x}> 2%$, multiply on both sides by x.
But you have to be careful with that! Unlike with an equation, multiplying on both sides by negative number reverses the ">" sign. So do two cases:

1) If x> 0 then $1>2x$. Divide on both sides by the positive number 2: $\frac{1}{2}> x$..
Since we are requiring that x be positve, we have $0< x< \frac{1}{2}$

2) If x< 0 then $1< 2x$. Divide on both sides by the positive number 2: $\frac{1}{2}< x$, But since we are requiring that x be negative, that is not possible.

The solution is $0<x \frac{1}{2}$.

It is also true that, for continuous functions, g and f, to change from f(x)<g(x) to f(x)> g(x), we have to go through f(x)= g(x) or a poinr where either f or g is undefined.

So start by solving the equation $\frac{1}{x}= 2$. That is the same as $1= 2x$, or $x=\frac{1}{2}$. I is also true that $\frac{1}{x}$ is undefined for x= 0. That divides the real numbers into three intervals, x< 0, 0< x< 1/2, and x> 1/2. We need only check one value of x in each interval. For x< 0 take x=-1. Then 1/x= -1 which is NOT larger than 2 so no x less than 0 satisfies 1/x> 2. For 0< x< 1/2 we can take x=1/4. Then 1/x= 4 which is greater than 2. Every number betwen 0 and 1/2 satisfies the inequalty. Finally take x= 1. Then 1/x=1 which is not larger than 2. No x larger than 1/2 satisfies the inequality.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.

Similar threads

Back
Top