MHB Rayanjafar's parametric integral question for YAnswers

AI Thread Summary
The discussion focuses on solving a parametric integral problem involving the curve defined by x = sin(t) and y = sin^2(t) for 0 < t < π/2. To find the area bounded by the curve and the x-axis, the integral is set up as I = ∫(from 0 to 1) y(x) dx, using the substitution t = arcsin(x). This leads to the integral I = ∫(from 0 to π/2) 2sin(t)(cos(t))^2 dt, resulting in an area of 2/3. For the volume of the solid formed by revolving the region around the x-axis, the volume integral V = ∫(from 0 to 1) π(y(x))^2 dx is established, following a similar approach. The discussion emphasizes the step-by-step methodology for solving both parts of the problem.
CaptainBlack
Messages
801
Reaction score
0
"C4 question, please help.?
the curve C has parametric equations x = sint , y = sin2t, 0<t<pi/2
a) find the area of the region bounded by C and the x-axis

and, if this region is revolved through 2pi radians about the x-axis,
b) find the volume of the solid formed

How do you do this question. Can anyone please show me step by step?"

C4 here denotes a question appropriate to the UK Core 4 A-Level Maths Exam
 
Last edited:
Mathematics news on Phys.org
(a) First sketch the curve. It obviously starts with slope \(2\) at \((0,0)\) and rises to a maximum of \(y=1\) at \(x=1/\sqrt(2)\) and then falls to \(y=0\) at \(x=1\).
View attachment 515The area we want is the integral:

\[I = \int_{x=0}^1 y(x) dx\]
Use the substitution \(t=arcsin(x), x=sin(t)\). Then \(dx = cos(t) dt\), and the integral becomes:

\[I = \int_{t=0}^{\pi/2} sin(2t) cos(t) dt\]
Now we replace the \(sin(2t)\) using the double angle formula by \(2 sin(t) cos(t)\) to get:

\[I = \int_{t=0}^{\pi/2} 2sin(t) (cos(t))^2 dt\]
As the integrand is the derivative of \(-(2/3) (cos(t))^3\) we get:

\[I = -(2/3) [0-1] = 2/3\].
The second part proceeds in much the same way once we write down the volume of revolution:

\[V= \int_{x=0}^1 \pi (y(x))^2 dx\]
and proceed in much the same way as before

CB
 

Attachments

  • parametric plot.JPG
    parametric plot.JPG
    53.8 KB · Views: 91
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top