MHB Real Solutions for 4x^2-40x+51=0 and 4x^2-40[x]+51=0

  • Thread starter Thread starter anemone
  • Start date Start date
AI Thread Summary
The discussion focuses on finding real solutions for the equation 4x^2 - 40⌊x⌋ + 51 = 0, emphasizing the importance of correctly interpreting the floor function. Participants acknowledge a mistake in the initial approach and express appreciation for contributions to the problem-solving process. The equation requires consideration of integer values for ⌊x⌋, leading to a systematic exploration of potential solutions. The conversation highlights collaborative problem-solving in mathematical contexts. Ultimately, the goal is to identify all valid real solutions for the given quadratic equation.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find all real solutions for the system $$4x^2-40\left\lfloor{x}\right\rfloor+51=0$$.
 
Mathematics news on Phys.org
anemone said:
Find all real solutions for the system $$4x^2-40\left\lfloor{x}\right\rfloor+51=0$$.

First $4x^2+ 51$ is positive. So x has to be positive else the sum is positive
we have $4x^2 - 40 \lfloor x \rfloor + 51 = 0$ => $4x^2 - 40 x + 51 <= 0$ equal only when x is integer and $4(x+1)^2 - 40 x + 51 >0$
$4x^2- 40 x + 51 < 0$
$=> 2(x-5)^2 < 49$
or $=> (x-5) < 3.5$
$=> x < 8.5$
$4(x+1)^2 - 40 x + 51 >0$
$=>4x^2 - 32 x + 55 >0$
$=>4(x - 4)^2 >9$
$=>x > 6.25$
So we seek solution for $\lfloor x \rfloor$ = 6 or 7 or 8
for $6 , 4x^2 = 240-51 = 189$ A solution
for $7, 4x^2 = 229$ A solution
for $8, 4x^2 = 269$ A solution
so solutions are $\frac{\sqrt{189}}{2},\frac{\sqrt{229}}{2}, \frac{\sqrt{269}}{2}$
 
Hi kaliprasad,

Nice try but the solutions aren't complete...:(
 
anemone said:
Hi kaliprasad,

Nice try but the solutions aren't complete...:(

you are right. my mistake

Forgot the solution to the left

$4(x-4)^2 > 9$ also gives $x < 2.5$
$2(x-5)^2 <49$ give $x > 1.5$
so take $\lfloor x\rfloor =2$ to get $4x^2 = 29$ which gives another solution $\frac{\sqrt{29}}{2}$
 
anemone said:
Find all real solutions for the system $$4x^2-40\left\lfloor{x}\right\rfloor+51=0$$.

As noted by kaliprasad, $x$ is positive.

If $m=\lfloor x\rfloor$ then $x=m+c$ for some $0\le c<1$, so we have

$$4(m+c)^2-40m+51=0$$

$$4m^2+8mc+4c^2-40m+51=0\implies4m^2-40m+51=-8mc-4c^2$$

As $m$ and $c$ are both positive, all possible $m$ are integers between the zeros of $4m^2-40m+51=0$.

This gives $m=2,3,4,5,6,7,8$ to check, so we have

$4x^2=29$
$4x^2=69$
$4x^2=109$
$4x^2=149$
$4x^2=189$
$4x^2=229$
$4x^2=269$

Solving the above equations for $x$ and substituting into the original equation we find solutions at

$$x\in\left\{\dfrac{\sqrt{29}}{2},\dfrac{\sqrt{189}}{2},\dfrac{\sqrt{229}}{2},\dfrac{\sqrt{269}}{2}\right\}$$
 
Good job to both of you! And thanks for participating!:cool:
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top