B Redshift of a light pulse between 2 accelerating rockets

sphyrch
Messages
37
Reaction score
9
I'm reading book from here. Suppose two rockets are accelerating with the same acceleration ##a## and are separated by some distance ##z##. At time ##t_0## the trailing rocket emits a light pulse. The book tells that pulse reaches leading box after time ##z/c## as seen in background frame. But won't the pulse actually have to cover a distance more than ##z## to reach the front rocket since the front rocket would've moved forward in that time? This on pg 65
 
Physics news on Phys.org
Yes, that is a first order approximation.
 
Dale said:
Yes, that is a first order approximation.
It like this? If front ship moved extra ##x## dist by the time (say ##t##) light reached, then ##ct-z=ut+at^2/2##. and then we say ##u<<c## so we ignore, and we say that time taken is super short so we ignore ##t^2## too. So every thing gets ignored and we get ##ct-z=0##. This the author logic?
 
More or less, yes. The only other thing is that usually they choose the reference frame where ##u=0##. So the displacement due to acceleration is 2nd order (##at^2/2##)
 
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...

Similar threads

Back
Top