- #1
Lambda96
- 223
- 75
- Homework Statement
- Show that ##L[\gamma] ## takes the following form for small ##\frac{v}{c}## ##L[\gamma] = \alpha_1 + \alpha_2 \int_{t_i}^{t_f} \mathrm{d}t \, \frac{1}{2} m v(t)^2 + \mathcal{O}\left(\left(\frac{v}{c}\right)^4\right)##
- Relevant Equations
- none
Hi,
I am stuck with the following task
I have developed a Taylor expansion for ##L[\gamma]=\sqrt{c^2-v^2}## up to the third order for the position ##a=0##, for this I have rewritten ##L[\gamma]## as follows:
$$L[\gamma]=\sqrt{c^2-v^2}=c \sqrt{1-\frac{v^2}{c^2}}$$
Then I did the following ##x=\frac{v^2}{c^2}## and got the following expression for Taylor:
$$L[\gamma] \approx c - \frac{v^2}{2c}+ \frac{v^4}{8 c^3}-\frac{v^6}{16 c^5}+\mathcal{O}\left(\left(\frac{v^2}{c^2}\right)^4\right)$$
Then I formed the integral
$$L[\gamma]=\int_{t_i}^{t_f} dt \quad c - \frac{v^2}{2c}+ \frac{v^4}{8 c^3}-\frac{v^6}{16 c^5}+\mathcal{O}\left(\left(\frac{v^2}{c^2}\right)^4\right)$$
Then integral can now be divided
$$L[\gamma]=\int_{t_i}^{t_f} dt \quad c - \int_{t_i}^{t_f} dt \frac{v^2}{2c}+ \int_{t_i}^{t_f} dt \frac{v^4}{8 c^3}- \int_{t_i}^{t_f} dt \frac{v^6}{16 c^5}+ \int_{t_i}^{t_f} dt \mathcal{O}\left(\left(\frac{v^2}{c^2}\right)^4\right)$$
For the first part I would now assume the following ##\int_{t_i}^{t_f} dt \quad c = c(t_f -t_i)=\alpha_1## but unfortunately I can't get any further with the rest.
I am stuck with the following task
I have developed a Taylor expansion for ##L[\gamma]=\sqrt{c^2-v^2}## up to the third order for the position ##a=0##, for this I have rewritten ##L[\gamma]## as follows:
$$L[\gamma]=\sqrt{c^2-v^2}=c \sqrt{1-\frac{v^2}{c^2}}$$
Then I did the following ##x=\frac{v^2}{c^2}## and got the following expression for Taylor:
$$L[\gamma] \approx c - \frac{v^2}{2c}+ \frac{v^4}{8 c^3}-\frac{v^6}{16 c^5}+\mathcal{O}\left(\left(\frac{v^2}{c^2}\right)^4\right)$$
Then I formed the integral
$$L[\gamma]=\int_{t_i}^{t_f} dt \quad c - \frac{v^2}{2c}+ \frac{v^4}{8 c^3}-\frac{v^6}{16 c^5}+\mathcal{O}\left(\left(\frac{v^2}{c^2}\right)^4\right)$$
Then integral can now be divided
$$L[\gamma]=\int_{t_i}^{t_f} dt \quad c - \int_{t_i}^{t_f} dt \frac{v^2}{2c}+ \int_{t_i}^{t_f} dt \frac{v^4}{8 c^3}- \int_{t_i}^{t_f} dt \frac{v^6}{16 c^5}+ \int_{t_i}^{t_f} dt \mathcal{O}\left(\left(\frac{v^2}{c^2}\right)^4\right)$$
For the first part I would now assume the following ##\int_{t_i}^{t_f} dt \quad c = c(t_f -t_i)=\alpha_1## but unfortunately I can't get any further with the rest.