Relativistic Kinetic energy, momentum, speed.

AI Thread Summary
The discussion revolves around calculating the kinetic energy, momentum, and speed of an electron accelerated to 30 MeV. The user successfully calculated the total energy in Joules and the rest mass energy using Einstein's equation, leading to a kinetic energy of approximately 3.99 x 10^-13 J. Guidance was provided on using the energy-momentum relation and the Lorentz factor to find momentum and speed, emphasizing the importance of keeping units consistent. The conversation highlighted that calculating energies in keV and speeds as fractions of the speed of light simplifies the process. Overall, the user was encouraged to continue their calculations with the provided formulas.
irre1evantt
Messages
2
Reaction score
0

Homework Statement



An Electron (rest mass=9.11*10^-31kg) is accelerated to an energy (mass energy+kinetic energy) of 30*10^6 eV (30 MeV). What is its kinetic energy? Its momentum? Its speed?
(Note: 1 eV = 1.602*10^-19 Joules; c=2.998 * 10^8 ms^-1)

Homework Equations

The Attempt at a Solution


Okay, so this problem was on a test that I missed and I have been trying to understand it/figure it out since then. I solved for Ek (kinetic energy) I believe. (Em= Mass energy; Ek = Kinetic Energy)
[/B]
Em + Ek = (3*10^6 eV)* ((1.602*10^-19 J)/(1eV))
=4.806 * 10^-13 J here I converted to Joules.

Then I solved for Em
Em = mc^2
=(9.11*10^-31 kg)(2.998 * 10^8 m*s^-1)^2
=8.188*10^-14 J

So, plugging into Em + Ek = 4.806*10^-13 J and rearranging to solve for Ek i get
Ek= 4.806*10^-13 J - Em
Ek= 4.806*10^-13 J - 8.188*10^-14 J
Ek= 3.9872 * 10^-13 J
I'm not too sure if I found Ek the accurate way.
Now, if I did, I'm a little lost in how to find my momentum and speed.
I know momentum is p = ymv = mv/(sqrt(1-(v/v)^2)) with y being gamma
and I believe after using that to find my momentum I can find velocity by rearranging the Ek equation of
Ek = (1/2)mv^2 to v= sqrt(2Ek/m)

Im just not sure if I'm heading in the right direction. A little guidance would be truly appreciated. Also, I wasn't sure where to post this question.
 
Physics news on Phys.org
Not a lot of point converting to Joules: you are just making work for yourself and adding a way to make mistakes.
What is wrong with all energies in keV and speeds as a fraction of the speed of light.

Thus total energy E is given by: ##E = \gamma E_0## ... E0 is the rest mass energy of an electron - which is 0.511 keV or 0.000511MeV and gamma is given by ##\gamma=(1-v^2)^{-1/2}##, with v as the fraction of the speed of light.

Kinetic energy T is then: ##T=E-E_0## and the energy-momentum relation is: ##E^2-E_0^2+p^2##

But otherwise you did OK: KE is the difference between total and rest energy.
Momentum is found from the energy-momentum relation.
You can use the equation above for unified units, for SI units it becomes:
$$E^2=E_0^2+p^2c^2$$
 
Agh, yes I see. Thank you so much!
 
NO worries, welcome to PF.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top