MHB Remainder/factor theorem question

  • Thread starter Thread starter ai93
  • Start date Start date
  • Tags Tags
    Theorem
AI Thread Summary
The discussion revolves around the application of the remainder and factor theorems on the polynomial function f(x) = x^4 + 4x^3 - x^2 - 16x - 12. It is established that there is no remainder when f(x) is divided by (x + 1), confirming that (x + 1) is a factor. The factor theorem is applied to show that (x + 2) is also a factor, as f(-2) equals zero. Long division is used to find the remaining factors, leading to the conclusion that the other factors are (x - 2) and (x + 3). The discussion highlights the importance of correctly interpreting long division in polynomial factorization.
ai93
Messages
54
Reaction score
0
Question

A function $$f\left(x\right)$$ is defined by f\left(x\right)=x^{4}+4x^{3}-xx^{2}-16x-12
a) Show that there is no remainder when $$f\left(x\right)$$ is divided by $$(x+1)$$

b)Use the factor theorem to show that $$(x+2)$$ is a factor of $$f\left(x\right)$$

c) Using answers to a) and b) determine the remaining factors by the long division method.

MY SOLUTIONa) $$(x+1)\sqrt{x^{4}+4x^{3}-x^{2}-16x-12}$$ = $$x^{2}+3x^{2}-4x-12$$
Remainder = 0

b) If $$(x+2)$$ is a factor then $$f(-2)=0$$

$$\therefore f(-2)=(-2)^{4}+4(-2)^{3}-(-2)^{2}-16(-2)-12$$ = 0
So (x+2) is a factor.

c)
(x+1)(x+2)=$$x^{2}+3x+2$$

I tried to use long division

$$(x^{2}+3x+2)\sqrt{x^{4}+4x^{3}-xx^{2}-16x-12}$$

But I am having trouble finding the last remaining factors?
How to solve by long division?
 
Mathematics news on Phys.org
The indicated long division is carried out as follows:

$$\begin{array}{r}x^2+x-6\hspace{102px}\\x^2+3x+2\enclose{longdiv}{x^4+4x^3-x^2-16x-12} \\ -\underline{\left(x^4+3x^3+2x^2\right)} \hspace{62px} \\ x^3-3x^2-16x \hspace{38px} \\ -\underline{\left(x^3+3x^2+2x\right)} \hspace{35px} \\ -6x^2-18x-12 \\ -\underline{\left(-6x^2-18x-12\right)} \hspace{-10px} \\ 0 \end{array}$$

Now you just need to factor the dividend. :D
 
MarkFL said:
The indicated long division is carried out as follows:

$$\begin{array}{r}x^2+x-6\hspace{102px}\\x^2+3x+2\enclose{longdiv}{x^4+4x^3-x^2-16x-12} \\ -\underline{\left(x^4+3x^3+2x^2\right)} \hspace{62px} \\ x^3-3x^2-16x \hspace{38px} \\ -\underline{\left(x^3+3x^2+2x\right)} \hspace{35px} \\ -6x^2-18x-12 \\ -\underline{\left(-6x^2-18x-12\right)} \hspace{-10px} \\ 0 \end{array}$$

Now you just need to factor the dividend. :D

I had initially got that with my rough working out, but was confused as there are 5 terms in the square root!

So the other factors would be $$(x-2)(x+3)$$ :D
 
mathsheadache said:
I had initially got that with my rough working out, but was confused as there are 5 terms in the square root!

So the other factors would be $$(x-2)(x+3)$$ :D

Your factorization of the dividend is correct. That's not a square root though, that is the long division symbol, which denotes a very different operation. :D
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
2
Views
1K
Replies
6
Views
2K
Replies
7
Views
1K
Replies
1
Views
1K
Replies
4
Views
1K
Replies
4
Views
2K
Back
Top