Insights Representations and Why Precision is Important

fresh_42
Staff Emeritus
Science Advisor
Homework Helper
Insights Author
2024 Award
Messages
20,694
Reaction score
28,065
First of all: What is a representation? It is the description of a mathematical object like a Lie group or a Lie algebra by its actions on another space 1). We further want this action to preserve the given structure because its structure is exactly what we're interested in. And this other space here should be a vector space since we want to deal with operators and transformations.

Our main examples shall be the special unitary group and its Lie algebra. The special unitary group ##SU(n)## is the group of isometries of an n-dimensional complex Hilbert space that preserve the volume form on this space. How that? I thought it were ##SU(n)=\{\text{ unitary matrices }\}##? To be a bit more precise $$SU(n)=\{A \in \mathbb{M}_n(\mathbb{C})\,\vert \, A\cdot A^\dagger = 1 \wedge \det(A)=1\}$$
Well, both is true. And the definition via matrices is already our first example of a representation. It is in a way nearby via the association

$$\it{isometry} \rightarrow \it{transformation} \rightarrow \it{ matrix}$$

Continue reading ...
 
Last edited:
  • Like
Likes kith, Math Amateur and Greg Bernhardt
Physics news on Phys.org
Nice.

Very important for understanding modern physics - and of course just for the math.

Thanks
Bill
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top