I Resonant Frequency Formula for a given object

AI Thread Summary
The discussion centers on the challenge of determining the resonant frequency of various objects, such as cars, rocks, and water. While the formulas for continuous waves and springs are established, there is no single formula applicable to all objects. Instead, multiple resonant frequencies exist for different geometries, necessitating computer simulations to identify them. The Wave Equation is suggested as a common method for calculating resonant frequencies in simple geometries. Users are encouraged to explore resources, including videos, to better understand the Wave Equation.
btb4198
Messages
570
Reaction score
10
I know the v = λf is the formula to find the resonance frequency of a single continuous wave and the formula for resonance frequency of a spring is: 1/2π∗sqrt(𝑘/𝑚)

but what about the Formula for a random object?
a car, or a rock, water ?

is there one Formula to rule them all? or do you have to develop an Formulae per object?
if so, how do you do that ?
 
Physics news on Phys.org
btb4198 said:
I know the v = λf is the formula to find the resonance frequency of a single continuous wave
Not really. That is the equation that relates the velocity of a traveling wave to its frequency and wavelength.

btb4198 said:
but what about the Formula for a random object?
a car, or a rock, water ?

is there one Formula to rule them all?
In general there will be many resonant frequencies of objects, and you will need to do computer simulations to try to figure out what they are.

One common way of calculating the resonant frequency of a simple geometry is to solve the Wave Equation:

https://en.wikipedia.org/wiki/Wave_equation

Are you familiar yet with the Wave Equation?
 
berkeman said:
Not really. That is the equation that relates the velocity of a traveling wave to its frequency and wavelength.In general there will be many resonant frequencies of objects, and you will need to do computer simulations to try to figure out what they are.

One common way of calculating the resonant frequency of a simple geometry is to solve the Wave Equation:

https://en.wikipedia.org/wiki/Wave_equation

Are you familiar yet with the Wave Equation?
I have hear of it before, but no I am not.
I use YouTube it and found these:
https://www.youtube.com/results?search_query=+Wave+Equation
I will watch these videos on it
 
Consider an extremely long and perfectly calibrated scale. A car with a mass of 1000 kg is placed on it, and the scale registers this weight accurately. Now, suppose the car begins to move, reaching very high speeds. Neglecting air resistance and rolling friction, if the car attains, for example, a velocity of 500 km/h, will the scale still indicate a weight corresponding to 1000 kg, or will the measured value decrease as a result of the motion? In a second scenario, imagine a person with a...
Scalar and vector potentials in Coulomb gauge Assume Coulomb gauge so that $$\nabla \cdot \mathbf{A}=0.\tag{1}$$ The scalar potential ##\phi## is described by Poisson's equation $$\nabla^2 \phi = -\frac{\rho}{\varepsilon_0}\tag{2}$$ which has the instantaneous general solution given by $$\phi(\mathbf{r},t)=\frac{1}{4\pi\varepsilon_0}\int \frac{\rho(\mathbf{r}',t)}{|\mathbf{r}-\mathbf{r}'|}d^3r'.\tag{3}$$ In Coulomb gauge the vector potential ##\mathbf{A}## is given by...
Dear all, in an encounter of an infamous claim by Gerlich and Tscheuschner that the Greenhouse effect is inconsistent with the 2nd law of thermodynamics I came to a simple thought experiment which I wanted to share with you to check my understanding and brush up my knowledge. The thought experiment I tried to calculate through is as follows. I have a sphere (1) with radius ##r##, acting like a black body at a temperature of exactly ##T_1 = 500 K##. With Stefan-Boltzmann you can calculate...
Back
Top