Reversable process with adiabatic expansion

AI Thread Summary
The discussion revolves around the analysis of a reversible cycle involving one mole of a monatomic ideal gas, specifically focusing on the adiabatic expansion process. Key calculations include determining the temperature at point B using the ideal gas law, which resulted in 121.85 K, and subsequently finding temperatures at points A and C through adiabatic conditions. The heat added to the gas during the isochoric process was calculated as 1471.6 J, while the heat leaving the gas during the isobaric process was -561.68 J. The net work done by the gas was found to be approximately 909.95 J, confirming that the work done equals the net heat flow due to the first law of thermodynamics. The calculations, despite yielding low temperature values, were deemed correct based on the conditions of the problem.
osheari1
Messages
5
Reaction score
0

Homework Statement


One mole of a monatomic ideal gas is taken through the reversible cycle shown below.
http://img508.imageshack.us/img508/2595/newbitmapimageqm.png
process bc is an adiabatic expansion, with P_b = 10.00 atm and V_b = 10^-3 m^3.
Find (a) the energy added to the gas as heat. (b) find the energy leaving the gas as heat, (c) the net work done by the gas, and (d) the efficiency of the cycle.


Homework Equations


PV=nRT (ideal gas)
PV^(gamma) = constant
gamma = C_p/C_v
V^(gamma-1)T = constant
U = (3/2)nRT (for a monatomic gas)

The Attempt at a Solution


I really don't know how to start this problem
I know for the bc section of the cycle Q = 0 because its an adiabatic expansion.
I also solved for the temperature at point b T = PV/(nR) = (1.0132*10^6Pa)(10^-3m^3)/(1mole)(8.315) = 121.85 K

from here I am not sure what to do because I am not given gamma or the pressure at a or c


Your help is much appreciated
 
Last edited by a moderator:
Physics news on Phys.org
osheari1 said:

Homework Statement


One mole of a monatomic ideal gas is taken through the reversible cycle shown below.
http://img508.imageshack.us/img508/2595/newbitmapimageqm.png
process bc is an adiabatic expansion, with P_b = 10.00 atm and V_b = 10^-3 m^3.
Find (a) the energy added to the gas as heat. (b) find the energy leaving the gas as heat, (c) the net work done by the gas, and (d) the efficiency of the cycle.


Homework Equations


PV=nRT (ideal gas)
PV^(gamma) = constant
gamma = C_p/C_v
V^(gamma-1)T = constant
U = (3/2)nRT (for a monatomic gas)

The Attempt at a Solution


I really don't know how to start this problem
I know for the bc section of the cycle Q = 0 because its an adiabatic expansion.
I also solved for the temperature at point b T = PV/(nR) = (1.0132*10^6Pa)(10^-3m^3)/(1mole)(8.315) = 121.85 K

from here I am not sure what to do because I am not given gamma or the pressure at a or c
[Note: A reversible cycle has to be in equilibrium with its surroundings at all time. This means heat flow can only occur when there is an infinitessimal temperature difference between the system and the hot or cold reservoirs. So heatflow has to occur isothermally. This cannot occur on the isochoric or isobaric parts of this cycle so I fail to see how this can be a reversible cycle. But that is just an aside.]

You have to determine the temperatures at a, b and c.

First, determine the temperature at b using the ideal gas law.

Second, determine the temperature and pressure at c using the adiabatic condition.

Then determine the temperature at a from that.

Since a-b is isochoric you can work out the heatflow into the gas from the change in temperature (using what specific heat capacity and what value?)

Since c-a is isobaric, you can work out the heatflow out of the gas from the change in temperature (using what specific heat capacity and what value?).

Since b-c is adiabatic, what can you say about the heat flow from b-c?

AM
 
Last edited by a moderator:
after working it out I ended up with temperature values of T_a = 3.86K, T_b = 121.85, T_c = 30.88. however, these values seems extremely low, but I just assumed it was because of the very small volume.
I determined these values by calculated gamma. sense the gas is monatomic and ideal, 5/2R = C_p and C_p = C_v +R so Gamma = 5/2/(5/2-1) = 1.66

so, the heat flowing into the system is from the Isochoric process, Q = U + 0 = 3/2nRT = 1471.6J
the heat flowing out of the system is from the isobaric process, Q = 5/2nRT = -561.68J

The only work done by the process is from the adiabatic expansion and the isobaric process, so Wnet = Wbc + Wca = -(Ubc) + (Qca - Uca) = -(3/2*8.315(30.88-121.85)) + (-561.67 - 3/2nRT) = 1134.62 +(337 - 561.67) = 909.95 J
 
osheari1 said:
after working it out I ended up with temperature values of T_a = 3.86K, T_b = 121.85, T_c = 30.88. however, these values seems extremely low, but I just assumed it was because of the very small volume.
I determined these values by calculated gamma. sense the gas is monatomic and ideal, 5/2R = C_p and C_p = C_v +R so Gamma = 5/2/(5/2-1) = 1.66

so, the heat flowing into the system is from the Isochoric process, Q = U + 0 = 3/2nRT = 1471.6J
the heat flowing out of the system is from the isobaric process, Q = 5/2nRT = -561.68J

The only work done by the process is from the adiabatic expansion and the isobaric process, so Wnet = Wbc + Wca = -(Ubc) + (Qca - Uca) = -(3/2*8.315(30.88-121.85)) + (-561.67 - 3/2nRT) = 1134.62 +(337 - 561.67) = 909.95 J
That looks right. You don't have to do so much calculation to find the work. By the first law, since there is no change in U in one cycle, so the work done by the gas must equal the net heat flow: W = \Delta Q = Q_{in} - Q_{out} = 1471.6-561.7 = 909.9 J

AM
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top