MHB Rewrite in logarithmic form: e^(-1) = c

  • Thread starter Thread starter Vi Nguyen
  • Start date Start date
  • Tags Tags
    Form Logarithmic
AI Thread Summary
The equation e^(-1) = c can be rewritten in logarithmic form as ln(e^(-1)) = ln(c), which simplifies to -1 = ln(c). The discussion highlights a misunderstanding of logarithms, questioning the source of the logarithm problems being posed. It emphasizes the equivalence between exponential and logarithmic forms, stating that if y = a^x, then log_a(y) = x. Understanding these concepts is crucial for solving logarithmic equations effectively. The conversation underscores the importance of grasping the fundamentals of logarithms for accurate problem-solving.
Vi Nguyen
Messages
13
Reaction score
0
Rewrite in logarithmic form:

e^(-1) = c
 
Mathematics news on Phys.org
$$\ln\left(e^{-1}\right)=\ln(c)$$

$$-1=\ln(c)$$
 
thanks
 
You have posted a number of logarithm problems without, apparently, know what a "logarithm" is! If you are not taking a class that involves logarithms, where are you getting these problems?

$y= a^x$ is equivalent to $log_a(y)= x$.
 
Last edited by a moderator:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top