A Ricci tensor for Fermi normal coordinates

  • A
  • Thread starter Thread starter TimWilliams87
  • Start date Start date
TimWilliams87
Messages
7
Reaction score
0
TL;DR Summary
Can the Ricci tensor be written simply in terms of second derivatives of the metric by the relation with the Riemann tensor?
I am learning about Fermi normal coordinates for an inertial observer on a reference curve from the textbook ''Advanced general relativity'' by Eric Poisson. The metric is written as g = eta + h, where eta is the Minkowski metric and h is the spacetime curvature perturbation close to the geodesic up to order x^2. t is proper time along the geodesic.

In these coordinates, the metric can be expressed as

$$ g_{tt} = -1 -R_{tatb}(t)x^ax^b + O(x^3), $$

$$ g_{ta} = \frac{2}{3}R_{tbac}(t) + O(x^3), $$

$$ g_{ab} = \delta_{ab} - \frac{1}{3}R_{acbd}(t)x^cx^d + O(x^3), $$

where ##R_{abcd}## is the Riemann tensor. It is stated in Poisson that these are related to statements regarding second derivatives of the metric (which I assume are just spatial derivatives only of the perturbing part of the metric h).

Since the components of the Riemann tensor can be written in terms of second derivatives of the metric, can one write components of the Ricci tensor simply in terms of second derivatives of the metric? So, for example, what is the component of the Ricci tensor R_{00}?

We do have as usual the relation

$$ R_{00} = g^{ii}R_{0i0i} , $$

but this seems like it would become complicated.
 
Last edited by a moderator:
Physics news on Phys.org
@TimWilliams87 please review the PF LaTeX Guide. LaTeX formulas here are delimited by double dollar signs, for equations standing alone, or double pound signs for inline LaTeX. I have used magic moderator powers to edit your OP accordingly.
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
Back
Top