Riemann Hypothesis: Question on Critical Line

ii LeGiiT ii
Messages
2
Reaction score
0
I have a question concerning the Riemann Hypothesis, a conjecture about the distribution of zeros of the Riemann-zeta function. the trivial zeros (s=-2, s= -4, s=-6) arent much of a concern as the NON-trivial zeros, where any real part of the non-trivial zero is = 1/2.

What i am having difficulty with is the discussion on the Critical line, (in a different forum) if anyone is seasoned with the reasoning behind the hypothesis your assistance will be greatly appreciated.

*As with TRIllions other math enthusiasts, i will be attempting to unearth a proof of this hypothesis (someday :smile: )
 
Physics news on Phys.org
Sorry about the original message, (i was too vague :smile: ), thanks. ill use these sites.
 
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...
Back
Top