- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hey! (Wave)
Let the ring of the integer $p$-adic numbers $\mathbb{Z}_p$.
Could you explain me the following sentences? (Worried)
Let the ring of the integer $p$-adic numbers $\mathbb{Z}_p$.
Could you explain me the following sentences? (Worried)
- It is a principal ideal domain.
$$$$ - The function $\epsilon_p: \mathbb{Z} \to \mathbb{Z}_p$ is an embedding.
(So, $\mathbb{Z}$ is considered $\subseteq \mathbb{Z}_p$)
$$$$ - The units of the ring $\mathbb{Z}_p$:
$$\mathbb{Z}^*=\mathbb{Z} \setminus p \mathbb{Z}$$
so the units are
$$= \{ \sum_{n=0}^{\infty} a_n p^n | a_0 \neq 0\}$$
- Each element $x$ of $\mathbb{Z}_p \setminus \{ 0 \}$ has a unique expression of the form $x=p^m u | m \in \mathbb{N}_0$
- $\mathbb{Z}_p$ has exactly these ideals:
$$0, p^n \mathbb{Z}_p (n \in \mathbb{N}_0)$$
Furthermore, $\cap_{n \in \mathbb{N}_0} p^n \mathbb{Z}_0=\{0\}$ and $\frac{\mathbb{Z}_p}{p^n \mathbb{Z}_p} \cong \frac{\mathbb{Z}}{p^n \mathbb{Z}}$
Last but not least, the unique maximal ideal of $\mathbb{Z}_p$ is $p \mathbb{Z}_p$.