RLC Circuits - Resonant Frequency, Power

AI Thread Summary
The discussion focuses on solving an RLC circuit problem involving resonance frequency, maximum power, and related calculations. The circuit consists of a 500-ohm resistor, a 0.4 mH inductor, and two 50 pF capacitors in parallel. The resonant frequency is determined using the formula ω0 = 1/√(LC), where total capacitance is the sum of the two capacitors. Maximum power is achieved at resonance, where impedance is minimized, and the equation for half-power frequencies is discussed but poses algebraic challenges for some participants. Assistance is sought for algebraic manipulation and verification of the physics involved in the calculations.
fogel1497
Messages
10
Reaction score
0

Homework Statement


An AC circuit consists of an alternative emf of 1 V connected to a resistor of 500
Ohms, an inductance of 0.4 mH, and two capacitors connected in parallel of 50 pF
each, We want to find the resonance frequency of this circuit, the maximum power
dissipated by the resistance, and at what frequencies ω will it be half as large.
a. Draw the circuit and includes all the relevant quantities for this problem. What
quantities do you need to find ω0, Pmax, and ω’s? (10 pts)
b. What concepts and equations will you use to solve this problem? (5 pts)
c. Solve for ω0, Pmax, and ω’s in term of symbols. (15 pts)
d. Solve for ω0, Pmax, and ω’s in term of numbers. (5 pts)
e. Verify the units, and verify if your values are plausible. (5 pts).


Homework Equations


1. omega_0 = 1/((LC)^.5) *omega_0 is resonant frequency*
2. Power Maximum = [root mean sqaure of (V^2)]/R
3. Power = (Power Maximum)(x^2)/(x^2 + Q^2(x^2-1)^2)
4. x = omega / omega_0
5. Z=(R^2 + (X_L - X_C)^2)^.5


The Attempt at a Solution



a. I just have a normal AC circuit with a 500 ohm resistor and .4mH inductor in series, followed by two 50pF capacitors in paralell.
b. This is pretty much covered in my relevant equations section above.

c. omega_0 = 1/((L)(C_1+C_2))
I put this down because I'm given L and the total capacitance of two capacitors in series is just their sum.

In an RLC circuit, maximum power occurs at the resonant frequency. Thats because the current is maximized when impedance is at a minimum. And the impedance is at a minimum at the resonant frequency, (X_L and X_C are equal and cancel out, leaving the impedance equal to R. So:

Power_Maximum = (I^2)*R = Power Maximum = [root mean sqaure of (V^2)]/R

Then to find omega, (the frequency when power is at half its maximum) I said:

(1/2)Power_Maximum = (Power Maximum)(x^2)/(x^2 + Q^2(x^2-1)^2)
What I want to do is solve for x in terms of everything else, then substitute x=omega/omega_0 and Q=(omega_0)(L)/R

The problem with that is i don't know the algebra to do that, and even if i did I am not sure that is correct. Part d and e follow if i can get part c. Can anyone help?
 
Physics news on Phys.org
Hi Fogel. I'm no expert on this, but am interested and may be able to help with the algebra before your post falls off the first page. It looks fairly easy to solve your equation
(1/2)Power_Maximum = (Power Maximum)(x^2)/(x^2 + Q^2(x^2-1)^2)
for x. If you cancel out the Power-Maximum's and multiply both sides by the denominator you soon end up with
Q²(x²)² - (2Q²+1)x² + Q² = 0
If you replace x² with y you just have a quadratic equation in y that can be solved with the quadratic formula. Only a positive solution is useful and only positive values of x itself are possible since x = ω/ωo.
 
Thanks for your reply, i'd like some verification by someone on my physics if anyone can help.
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...

Similar threads

Back
Top