I Rodrigues' Formula for Laguerre equation

AI Thread Summary
The discussion revolves around deriving the Rodrigues formula for the Laguerre polynomial solutions from the Laguerre ordinary differential equation. The user identifies the weight function as \( w(x) = e^{-x} \) and attempts to express \( L_n(x) \) but struggles with the normalization factor \( \frac{1}{n!} \). This factor is explained as a normalization constant that ensures the orthogonality condition of the Laguerre polynomials over the interval \([0, \infty)\). The normalization is verified through integration and the use of Leibniz's rule. Ultimately, the user confirms their understanding of the derivation and the role of the normalization constant.
appmathstudent
Messages
6
Reaction score
2
TL;DR Summary
Rodrigues' Formula for Laguerre equation
This is exercise 12.1.2 a from Arfken's Mathematical Methods for Physicists 7th edition :Starting from the Laguerre ODE,

$$xy''+(1-x)y'+\lambda y =0$$

obtain the Rodrigues formula for its polynomial solutions $$L_n (x)$$

According to Arfken (equation 12.9 ,chapter 12) the Rodrigues formula is :

$$ y_n(x) = \frac {1}{w(x)}(\frac{d}{dx})^n[w(x)p(x)^n]$$

I found that $$w(x) = e^{-x}$$ and then :

$$L_n(x) = e^x (\frac{d}{dx})^n[e^{-x}x^n]$$

But the answer is ,according to Arfken and everywhere else I look,is :

$$L_n(x)=\frac{e^x}{n!}.\frac{d^n}{dx^n}(x^ne^{-x})$$

I can't figure out exactly how $$ \frac{1}{n!}$$ appeared.
I think it might be related to the fact that $$ L_n(x) =\sum_{k=0}^n \binom{n}{k} \frac{(-x)^k}{k!} \quad $$

Any help will be appreciated , thank you
 
Mathematics news on Phys.org
You can have any constant factor you want and the result is still a solution. The factor of ##\frac 1 {n!}## may simply be the convention.
 
The ##\frac{1}{n!}## is the normalisation constant, it ensures that:

\begin{align*}
\int_0^\infty e^{-x} L_n (x) L_n (x) dx = 1
\end{align*}

Explicitly, it ensures that:

\begin{align*}
\frac{1}{(n!)^2} \int_0^\infty e^{x} \frac{d^n}{dx^n} (x^n e^{-x}) \frac{d^n}{dx^n} (x^n e^{-x}) dx = 1
\end{align*}

This can be verified by using Leibnitz and some integration by parts:

\begin{align*}
& \frac{1}{(n!)^2} \int_0^\infty \left( \sum_{k=0}^n (-1)^{n-k} \frac{n!}{k! (n-k)!} x^{n-k} \right) \frac{d^n}{dx^n} (x^n e^{-x}) dx
\nonumber \\
& = \frac{1}{n!} \int_0^\infty x^n e^{-x} dx
\nonumber \\
& = \frac{1}{n!} n! = 1 .
\end{align*}

I'll leave you to fill in the details.
 
  • Like
Likes PeroK and appmathstudent
Thank you very much! I think I got it now
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top