- #1
Huzaifa
- 40
- 2
- Homework Statement
- The acceleration and velocity of a body rolling down without slipping on a frictionless inclined plane
- Relevant Equations
- $$
a=\dfrac{mg\sin \theta }{m+\dfrac{I}{r^{2}}}=\dfrac{g\sin \theta }{1+\dfrac{K^{2}}{r^{2}}} \cdots(1)
$$
$$
v=\sqrt{\dfrac{2mgh}{m+\dfrac{I}{r^{2}}}}=\sqrt{\dfrac{2gh}{1+\dfrac{K^{2}}{r^{2}}}}=\sqrt{\dfrac{2gs\sin \theta }{1+\dfrac{K^{2}}{r^{2}}}} \cdots (2)
$$
The acceleration and velocity of a body rolling down without slipping on a frictionless inclined plane are given by
$$
a=\dfrac{mg\sin \theta }{m+\dfrac{I}{r^{2}}}=\dfrac{g\sin \theta }{1+\dfrac{K^{2}}{r^{2}}} \cdots(1)
$$
$$
v=\sqrt{\dfrac{2mgh}{m+\dfrac{I}{r^{2}}}}=\sqrt{\dfrac{2gh}{1+\dfrac{K^{2}}{r^{2}}}}=\sqrt{\dfrac{2gs\sin \theta }{1+\dfrac{K^{2}}{r^{2}}}} \cdots (2)
$$
Here, $K$ is the radius of gyration, $m$ is the mass of the body, $r$ is the radius of the body, $\theta$ is the inclination of the plane, $h$ is the height of the slope, and $s$ is the length of the slope.
I am not able to derive the acceleration $a$ and velocity $v$. Please help me.
I derived time $t$ by dividing (2) by (1), but I am not able to derive (1) and (2).
$$
t=\dfrac{\sqrt{\dfrac{2gs\sin \theta }{1+\dfrac{K^{2}}{r^{2}}}}}{\dfrac{g\sin \theta }{1+\dfrac{K^{2}}{r^{2}}}}=\sqrt{\dfrac{2s\left( 1+\dfrac{K^{2}}{r^{2}}\right) }{g\sin \theta }}
$$
$$
a=\dfrac{mg\sin \theta }{m+\dfrac{I}{r^{2}}}=\dfrac{g\sin \theta }{1+\dfrac{K^{2}}{r^{2}}} \cdots(1)
$$
$$
v=\sqrt{\dfrac{2mgh}{m+\dfrac{I}{r^{2}}}}=\sqrt{\dfrac{2gh}{1+\dfrac{K^{2}}{r^{2}}}}=\sqrt{\dfrac{2gs\sin \theta }{1+\dfrac{K^{2}}{r^{2}}}} \cdots (2)
$$
Here, $K$ is the radius of gyration, $m$ is the mass of the body, $r$ is the radius of the body, $\theta$ is the inclination of the plane, $h$ is the height of the slope, and $s$ is the length of the slope.
I am not able to derive the acceleration $a$ and velocity $v$. Please help me.
I derived time $t$ by dividing (2) by (1), but I am not able to derive (1) and (2).
$$
t=\dfrac{\sqrt{\dfrac{2gs\sin \theta }{1+\dfrac{K^{2}}{r^{2}}}}}{\dfrac{g\sin \theta }{1+\dfrac{K^{2}}{r^{2}}}}=\sqrt{\dfrac{2s\left( 1+\dfrac{K^{2}}{r^{2}}\right) }{g\sin \theta }}
$$