The title of this thread, "Rotation curve of galaxy Keplerian method," hints at a big misunderstanding. Stars in a spiral galaxy do not have Keplerian orbits. The concept of a Keplerian orbit implicitly assumes a spherical mass distribution. Normal matter in a spiral galaxy does not have anything close to a spherical mass distribution. Instead, there's a central bulge that contains a tiny fraction of the galaxy's mass. Most of the normal matter is in a fairly thin disk. The gravitational potential of that central bulge + disk is not anything close to the conditions for Keplerian orbits.
What can be done is to assume that the concentration of stars hints at the total mass of the galaxy. (A good portion of normal matter is in interstellar gas clouds rather than stars, but presumably the concentration of stars is an indicator of the concentration of those gas clouds.) From this, one can calculate how fast a star in a roughly circular orbit should be going. It's more complex than simple Keplerian orbits, but it is doable.
This is where the problem arises. No matter how much fudging one does regarding the amount of normal matter in those interstellar gas clouds, the numbers don't add up. Stars + gas clouds + dust don't explain the observations. There are only two explanations. One is that our concept of gravitation is fundamentally incorrect at the galactic levels and larger. The other is that our concept of gravitation is correct, but that some other form of mass exists that we can't see in galaxies and that isn't distributed the way stars are (hence the term "dark matter").
There are very few indicators that we don't know how gravity works at galactic scales. There are a large number of indicators that the second explanation is the correct one.