I Rotation curve of galaxy Keplerian method

AI Thread Summary
The discussion centers on the challenges of applying Keplerian methods to the rotation curves of galaxies, highlighting that stars in spiral galaxies do not follow Keplerian orbits due to their non-spherical mass distribution. The gravitational potential created by the central bulge and the thin disk of stars complicates the calculations of expected rotation periods and velocities. Despite attempts to model the mass distribution using visible matter, the observed velocities of stars do not align with predictions, leading to two primary explanations: a fundamental misunderstanding of gravity at galactic scales or the existence of undetectable dark matter. The conversation emphasizes that current models fail to account for the discrepancies, suggesting that either Newtonian gravity is incorrect at these scales or that the distribution of mass in galaxies is not well understood. Ultimately, the discussion underscores the ongoing debate in astrophysics regarding the nature of gravity and the implications of dark matter.
Shailesh Pincha
Messages
17
Reaction score
0
There are 2 unknowns in the formula. The time period of rotation and the mass enclosed by orbit is Star. So how could we calculate the expected time period of rotation of stars in a galaxy and thus velocity of stars.
 
Astronomy news on Phys.org
We can measure the velocities, and we can measure the amount of visible matter. They don't fit together.
 
The title of this thread, "Rotation curve of galaxy Keplerian method," hints at a big misunderstanding. Stars in a spiral galaxy do not have Keplerian orbits. The concept of a Keplerian orbit implicitly assumes a spherical mass distribution. Normal matter in a spiral galaxy does not have anything close to a spherical mass distribution. Instead, there's a central bulge that contains a tiny fraction of the galaxy's mass. Most of the normal matter is in a fairly thin disk. The gravitational potential of that central bulge + disk is not anything close to the conditions for Keplerian orbits.

What can be done is to assume that the concentration of stars hints at the total mass of the galaxy. (A good portion of normal matter is in interstellar gas clouds rather than stars, but presumably the concentration of stars is an indicator of the concentration of those gas clouds.) From this, one can calculate how fast a star in a roughly circular orbit should be going. It's more complex than simple Keplerian orbits, but it is doable.

This is where the problem arises. No matter how much fudging one does regarding the amount of normal matter in those interstellar gas clouds, the numbers don't add up. Stars + gas clouds + dust don't explain the observations. There are only two explanations. One is that our concept of gravitation is fundamentally incorrect at the galactic levels and larger. The other is that our concept of gravitation is correct, but that some other form of mass exists that we can't see in galaxies and that isn't distributed the way stars are (hence the term "dark matter").

There are very few indicators that we don't know how gravity works at galactic scales. There are a large number of indicators that the second explanation is the correct one.
 
  • Like
Likes mfb
D H said:
The title of this thread, "Rotation curve of galaxy Keplerian method," hints at a big misunderstanding. Stars in a spiral galaxy do not have Keplerian orbits. The concept of a Keplerian orbit implicitly assumes a spherical mass distribution. Normal matter in a spiral galaxy does not have anything close to a spherical mass distribution. Instead, there's a central bulge that contains a tiny fraction of the galaxy's mass. Most of the normal matter is in a fairly thin disk. The gravitational potential of that central bulge + disk is not anything close to the conditions for Keplerian orbits.

What can be done is to assume that the concentration of stars hints at the total mass of the galaxy. (A good portion of normal matter is in interstellar gas clouds rather than stars, but presumably the concentration of stars is an indicator of the concentration of those gas clouds.) From this, one can calculate how fast a star in a roughly circular orbit should be going. It's more complex than simple Keplerian orbits, but it is doable.

This is where the problem arises. No matter how much fudging one does regarding the amount of normal matter in those interstellar gas clouds, the numbers don't add up. Stars + gas clouds + dust don't explain the observations. There are only two explanations. One is that our concept of gravitation is fundamentally incorrect at the galactic levels and larger. The other is that our concept of gravitation is correct, but that some other form of mass exists that we can't see in galaxies and that isn't distributed the way stars are (hence the term "dark matter").

There are very few indicators that we don't know how gravity works at galactic scales. There are a large number of indicators that the second explanation is the correct one.

That is precisely my question. We hypothesise the existence of dark matter or some new gravitational theory based on the deviation of rotation curve from what we expect from Kepler's III Law. But how do we formulate the Kepler's law to be applicable in that condition?
 
Shailesh Pincha said:
That is precisely my question. We hypothesise the existence of dark matter or some new gravitational theory based on the deviation of rotation curve from what we expect from Kepler's III Law. But how do we formulate the Kepler's law to be applicable in that condition?
That is not what is done. Kepler's laws derive from Newtonian gravitation assuming a very, very large central mass. Kepler's laws don't quite work even in the solar system. Jupiter's mass is about 1/1000th of that of the Sun. This means that deviations from Keplerian orbits are easily observable even in the solar system because scientists do much better than three place accuracy nowadays.

However, it is use possible to Newtonian gravity to predict what a star's orbit about the galaxy would look like. To do that, one needs a model of the mass distribution in the galaxy. An obvious model is to use the stars as a proxy for the mass distribution. And then there's a problem. No matter how one fudges the numbers, this approach just doesn't work. That means one of two things: Either Newton's law of gravitation is fundamentally incorrect at galactic scales, or that stars are not a good model of how mass is distributed in the galaxy. Assuming the first is correct leads to alternative formulations of gravitation. Assuming the second is correct (that, ignoring relativistic effects, Newtonian gravitation is a good model of how gravitation works, even at galactic scales) leads to some other form of matter that doesn't behave the way "ordinary" matter does.

There are problems with both. The Bullet Cluster is a big problem for alternative gravity models. That physicists have not seen anything like "dark matter" is a big problem for assuming we do know how gravitation works. However, most people assume that we do know how gravitation works. The Bullet Cluster (and others) shoot big holes into those alternatives to Newtonian gravity.
 
Is a homemade radio telescope realistic? There seems to be a confluence of multiple technologies that makes the situation better than when I was a wee lad: software-defined radio (SDR), the easy availability of satellite dishes, surveillance drives, and fast CPUs. Let's take a step back - it is trivial to see the sun in radio. An old analog TV, a set of "rabbit ears" antenna, and you're good to go. Point the antenna at the sun (i.e. the ears are perpendicular to it) and there is...
This thread is dedicated to the beauty and awesomeness of our Universe. If you feel like it, please share video clips and photos (or nice animations) of space and objects in space in this thread. Your posts, clips and photos may by all means include scientific information; that does not make it less beautiful to me (n.b. the posts must of course comply with the PF guidelines, i.e. regarding science, only mainstream science is allowed, fringe/pseudoscience is not allowed). n.b. I start this...
How does light maintain enough energy in the visible part of the spectrum for the naked eye to see in the night sky. Also, how did it start of in the visible frequency part of the spectrum. Was it, for example, photons being ejected at that frequency after high energy particle interaction. Or does the light become visible (spectrum) after hitting our atmosphere or space dust or something? EDIT: Actually I just thought. Maybe the EM starts off as very high energy (outside the visible...
Back
Top