RRC Circuit - Capacitor Charge?

AI Thread Summary
The discussion revolves around calculating the charge on a capacitor in an RRC circuit with two batteries and resistors. The initial attempt to use the formula Q = C*(V1 + V2) was incorrect due to the unequal battery voltages. It is emphasized that after closing the switch for a long time, the circuit reaches a steady state where the capacitor will have a constant voltage and no current flows through it. To find the voltage across the capacitor, applying Kirchhoff's voltage laws to the circuit loop is recommended. This approach leads to the correct calculation of the capacitor's charge.
bchubz
Messages
4
Reaction score
0

Homework Statement


http://www.webassign.net/hrw/hrw7_27-76.gif
The circuit in the figure shows a capacitor, two ideal batteries, two resistors, and a switch S. Initially S has been open for a long time. If it is then closed for a long time, what is the charge (in Coulombs) on the capacitor? Assume that the batteries have emfs of ε1 = 1.50 V and ε2 = 8.10 V and that C = 7.00 μF, R1 = 0.18 Ω, R2 = 0.44 Ω.

Homework Equations


Kirchoff's voltage laws


The Attempt at a Solution


I tried C*(V1+V2) = Q. This isn't correct, and not exactly sure where to go next.
 
Physics news on Phys.org
bchubz said:

Homework Statement


http://www.webassign.net/hrw/hrw7_27-76.gif
The circuit in the figure shows a capacitor, two ideal batteries, two resistors, and a switch S. Initially S has been open for a long time. If it is then closed for a long time, what is the charge (in Coulombs) on the capacitor? Assume that the batteries have emfs of ε1 = 1.50 V and ε2 = 8.10 V and that C = 7.00 μF, R1 = 0.18 Ω, R2 = 0.44 Ω.

Homework Equations


Kirchoff's voltage laws


The Attempt at a Solution


I tried C*(V1+V2) = Q. This isn't correct, and not exactly sure where to go next.

Because the two battery voltages are unequal, there will be a steady-state current in the long term. After stabilization, there will be no current through the cap, and a constant voltage across the cap. You can find that voltage by writing a loop equation around the outer loop to find the loop current, and then calculate what the voltages are at points going around the loop.
 
Great thanks! I just needed a little nudge.
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...

Similar threads

Back
Top