Scaling pressure drop to other temperatures

AI Thread Summary
To scale the pressure drop of Helium from room temperature to 80K, the discussion emphasizes the importance of considering both density and mass flow as temperature-dependent parameters. The proposed method involves using the relationship between densities at different temperatures to adjust the pressure drop. However, participants caution that pressure drop calculations for gases in pipes are influenced by more factors than just density, including outlet pressure and viscosity. A comprehensive understanding of these dynamics is necessary, and reference to established literature, such as "Transport Phenomena," is recommended for deeper insights. Accurate scaling requires careful consideration of all relevant variables beyond just density.
freddie_mclair
Messages
43
Reaction score
2
TL;DR Summary
I have pressure drop measurements at a certain temperature. How can I scale it to other temperatures?
Hi,
I have some measurements for pressure drop of Helium at room temperature and I would like to scale it to other temperatures. Taking into account that, i) the flow is turbulent, ii) the pressure drop, ##\Delta p##, happens always in the same piping and iii) there is only variation on the temperature of the fluid, woud it be sufficient to do:

##\Delta p_T = \Delta p_{RT} \frac{\rho_{RT}}{\rho_T}##

Where ##\rho## is the density and the subscripts RT is for room temperature and T is for other temperature. I can get ##\rho(T)## from thermodynamic tables.
Thanks!
 
Engineering news on Phys.org
I don't understand what you are trying to do. What would scale and why? Can you post a diagram of the system with states labeled?
 
Last edited:
There is much more required to determine the pressure drop of a gas in a pipe than you may think. And certainly, the effect of density on pressure drop is not the only factor. The outlet pressure and the viscosity of the gas are also parameters. For how to determine the pressure drop in a pipe for a compressible gas, you first need to know how it is done for an incompressible liquid. For how to do all this, see Chapter 7 of Transport Phenomena by Bird, Stewart, and Lightfoot.
 
I have measurments of Helium at room temperature across some piping. We have set different mass flows, while always keeping the inlet pressure constant and then we measured the pressure in the outlet. With this we have the pressure drop at different mass flows.
Now, I would like to extrapolate this data to 80K using the pressure drop calculated at room temperature. So, my idea is to do a sort of scaling using the related parameters that change with the temperature, which is the density, and now that I think of it, probably also the mass flow.
 
Here's a video by “driving 4 answers” who seems to me to be well versed on the details of Internal Combustion engines. The video does cover something that's a bit shrouded in 'conspiracy theory', and he touches on that, but of course for phys.org, I'm only interested in the actual science involved. He analyzes the claim of achieving 100 mpg with a 427 cubic inch V8 1970 Ford Galaxy in 1977. Only the fuel supply system was modified. I was surprised that he feels the claim could have been...
Thread 'Turbocharging carbureted petrol 2 stroke engines'
Hi everyone, online I ve seen some images about 2 stroke carbureted turbo (motorcycle derivation engine). Now.. In the past in this forum some members spoke about turbocharging 2 stroke but not in sufficient detail. The intake and the exhaust are open at the same time and there are no valves like a 4 stroke. But if you search online you can find carbureted 2stroke turbo sled or the Am6 turbo. The question is: Is really possible turbocharge a 2 stroke carburated(NOT EFI)petrol engine and...
Back
Top