- #1
i_hate_math
- 150
- 2
Does a system with zero entropy represent the thermal equilibrium at some temperature = 0K? Does the second law of thermodynamics entail that the system will eventually evolve to higher entropy?
e.g. a system of 7 magnetic dipoles of paramagnetic spin-1/2 particles in an external magnetic field . Does the microstate of 7 spin-up (or 7 spin-down) represent thermal equilibrium at temperature T = 0K, since its multiplicity = 1, hence entropy = 0? Or will the mighty 2nd Law tell the system to create more entropy?
e.g. a system of 7 magnetic dipoles of paramagnetic spin-1/2 particles in an external magnetic field . Does the microstate of 7 spin-up (or 7 spin-down) represent thermal equilibrium at temperature T = 0K, since its multiplicity = 1, hence entropy = 0? Or will the mighty 2nd Law tell the system to create more entropy?