Semiconductor -- Conduction and Valence bands

AI Thread Summary
Silicon atoms form energy bands due to the Pauli exclusion principle, creating a valence band and a conduction band with an energy gap. When sufficient energy is applied, electrons can move from the valence band to the conduction band, but the 0.7V mentioned relates to diode behavior rather than direct conduction energy. The application of a potential difference causes electrons to flow towards the positive electrode while holes move towards the negative electrode, facilitating current flow. The movement of holes contributes to overall conductivity, and electrons left in the valence band remain in their energy states until excited again. Understanding these concepts is crucial for grasping semiconductor behavior.
pj33
Messages
23
Reaction score
3
TL;DR Summary
How does a semiconductor conducts
I am a new to this and I try to understand the basics.
So initially once the atoms of silicon come together to form a solid, due to Pauli law no electrons can exist in the same energy state,thus many energy states are formed which together make the bands.

My problem starts at this stage where I try to understand the conduction in macro and micro state.
1) In the silicon the valence and conduction band have some energy difference, but once there is some energy input, the electrons get excited if there is sufficient energy, then they move to the conduction band (does this energy correspodn to the 0.7V required by the semiconductors such as diodes, to conduct?)
2) Can someone explain me the electron motion once the potential difference is applied ( I was shown a picture same as the first picture here https://ecee.colorado.edu/~bart/book/eband4.htm). I was told that the electrons roll down because there available energy levels, but I can't see how this work.
3) Then, once the potential difference is applied the electrons move towards the positive electrode thus current flow and the holes flow towards the negative electrode (does the flow of holes cause anything?)
4) What happens to the electrons left in the valence band?

Thank you in advance!
 
Engineering news on Phys.org
pj33 said:
Summary:: How does a semiconductor conducts

I think you should reference Chenming Hu's excellent & free semiconductor textbook.

For 1: You're close but your terminology is wrong. Read section 1.3 very closely. The 0.7V is something else. You cover it when you review PN junctions.
https://www.chu.berkeley.edu/wp-content/uploads/2020/01/Chenming-Hu_ch1-3.pdf

For 2 to 4: Chapter 2 of has an excellent description of drift. I think especially section 2.2 will help you.
https://www.chu.berkeley.edu/wp-content/uploads/2020/01/Chenming-Hu_ch2-2.pdf
 
Hey guys. I have a question related to electricity and alternating current. Say an alien fictional society developed electricity, and settled on a standard like 73V AC current at 46 Hz. How would appliances be designed, and what impact would the lower frequency and voltage have on transformers, wiring, TVs, computers, LEDs, motors, and heating, assuming the laws of physics and technology are the same as on Earth?
While I was rolling out a shielded cable, a though came to my mind - what happens to the current flow in the cable if there came a short between the wire and the shield in both ends of the cable? For simplicity, lets assume a 1-wire copper wire wrapped in an aluminum shield. The wire and the shield has the same cross section area. There are insulating material between them, and in both ends there is a short between them. My first thought, the total resistance of the cable would be reduced...
I used to be an HVAC technician. One time I had a service call in which there was no power to the thermostat. The thermostat did not have power because the fuse in the air handler was blown. The fuse in the air handler was blown because there was a low voltage short. The rubber coating on one of the thermostat wires was chewed off by a rodent. The exposed metal in the thermostat wire was touching the metal cabinet of the air handler. This was a low voltage short. This low voltage...
Back
Top