Sequence of discontinuous functions

rapple
Messages
25
Reaction score
0

Homework Statement


Need an example of a sequence of functions that is discountinuous at every point on [0,1] but converges uniformly to a function that is continuous at every point


Homework Equations





The Attempt at a Solution


I used the dirichlet's function as the template
f_n(x) = 1/n if x is rational and 0 if x is irrational

f_n(x) is discontinuous at every x in [0,1] and converges to f(x)=0

But this seems to be a erroneous analysis, because 1/n eventually goes to 0 so f_n(x) will be continuous as n->infinity

Can i get help in constructing this?
 
Physics news on Phys.org
You already have a good example. What do you mean "because 1/n eventually goes to 0 so f_n(x) will be continuous as n->infinity". Can you give me an example of a value of n where f_n is continuous?
 
Dick said:
Can you give me an example of a value of n where f_n is continuous?

Since lim n->inf (1/n)=0, as n-> infinity, f_n(x) will be 0 for rationals as well.

which means that for any epsilon>0, if n is large enough, |f(x)-0|< epsilon for rational as well?
 
Less than epsilon, yes. Equal to zero, no. No f_n is equal to zero. Just because the limit is 0, that doesn't mean f_n becomes zero for any finite n.
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top