[Set Theory] Proving Linear Order on a Subset of a Partially Ordered Set

EstimatedEyes
Messages
31
Reaction score
0

Homework Statement



Let L be a partially ordered set. Every countable chain in L has an upper bound. Let S be a countable subset of L such that for arbitrary a,b in S there exists a c in S such that a (less-than-or-equal) c and b (less-than-or-equal) c. Prove S has an upper bound in L.


Homework Equations



Definition of linear, partial orders.

The Attempt at a Solution



I assume the goal is to prove that S is linearly ordered and thus a chain, having an upper bound in L by the problem text. S is clearly a partial order because it is a subset of L. After listing the properties of a partial order, I have no idea how to continue. Any help would be greatly appreciated! Thanks!
 
Physics news on Phys.org
S is not a chain in general. So you won't be able to prove that. But try selecting a few elements in S which DO form a chain. This chain will have an upper bound. And if you selected the elements correctly, then the upper bound of the chain, will be an upper bound of S...
 
Okay, I assume that a,b, and c are the elements to which you are referring. Obviously a and b are comparable with c but I am having trouble showing that it then follows that a is comparable with b. I know it can't be this easy, but I don't completely understand why c is not already an upper bound because it is defined to be greater than or equal to all elements of S. Since S is a subset of L, c must also be an element of L, giving S an upper bound in L. What is wrong with this line of thinking?
 
EstimatedEyes said:
Okay, I assume that a,b, and c are the elements to which you are referring. Obviously a and b are comparable with c but I am having trouble showing that it then follows that a is comparable with b.

No, a, b and c aren't the elements which I had in mind. The chain is somewhat harder to construct... In fact, nothing guarantees you that a and b are comparable. In fact, it isn't even true!

I know it can't be this easy, but I don't completely understand why c is not already an upper bound because it is defined to be greater than or equal to all elements of S. Since S is a subset of L, c must also be an element of L, giving S an upper bound in L. What is wrong with this line of thinking?

I don't see why it is greater or equal to all elements of S? I only see why it is greater or equal than a and b. But it certeinaly isn't an upper bound of S!

It may help you to think of some explicit examples!
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top