- #71
Haelfix
Science Advisor
- 1,965
- 233
There are some serious theoretical problems with Shaposhnikov-Wetterich's proposal, although it does seem like an interesting partial solution to one (but not both) of the stability problems of the electroweak sector.
The biggest problem is that it doesn't even attempt to address the dozens of other problems that the standard model has, which would be fine, except that any additional resolutions to those problems will alter the running of the beta functions and alter many of the assumptions of the proposal, that is, unless the new physics were wrapped up in baroque constructions (hidden sectors, Higgs inflationary scenarios and the like) the exact details of which are problematic for cosmology and actually create highly nonminimal extensions of the standard model (the point that Nima is emphasizing where it seems like any new physics you can imagine is in some sort of trade off between naturalness and nonminimality).
Further, the prediction of the Higgs perse is actually not that impressive when you look at it from a certain point of view. It's very much related to the statement that a Higgs mass below 126 creates a scenario where the Higgs potential loses its absolute stability when run up to the Planck scale, so all it takes are assumptions that favor a data point right at the margin and presto you get your prediction.
A lot of this will become very clear in the next few years, as we get more precise precision electroweak observables that will squeeze the details on the Higgs potential and other relevant observables (top quark mass)
The biggest problem is that it doesn't even attempt to address the dozens of other problems that the standard model has, which would be fine, except that any additional resolutions to those problems will alter the running of the beta functions and alter many of the assumptions of the proposal, that is, unless the new physics were wrapped up in baroque constructions (hidden sectors, Higgs inflationary scenarios and the like) the exact details of which are problematic for cosmology and actually create highly nonminimal extensions of the standard model (the point that Nima is emphasizing where it seems like any new physics you can imagine is in some sort of trade off between naturalness and nonminimality).
Further, the prediction of the Higgs perse is actually not that impressive when you look at it from a certain point of view. It's very much related to the statement that a Higgs mass below 126 creates a scenario where the Higgs potential loses its absolute stability when run up to the Planck scale, so all it takes are assumptions that favor a data point right at the margin and presto you get your prediction.
A lot of this will become very clear in the next few years, as we get more precise precision electroweak observables that will squeeze the details on the Higgs potential and other relevant observables (top quark mass)