- #141
mathwonk
Science Advisor
Homework Helper
- 11,779
- 2,043
Good. That is correct. You can ignore the value at a single point in determining integrability. But it still requires a hypothesis to show it is integrable. In this case the function is not continuous nor even piece wise continuous, so the usual theorems in most books do not apply.
Here the function is integrable because it is "monotone" decreasing. Newton already proved before Riemann that all monotone functions have a definite integral. It is certainly not a sign of foolishness to forget or not have seen this. I am just indicating the level of subtlety that a college course may contain that is not usual in high school.
In most books the theorem that all continuous functions are integrable is stated but not proved. It seemed to me that since most functions people actually encounter are piecewise monotone (e.g. all polynomials, rational functions, exponential, log, and trig functions), it would be nice to give the actual proof that such functions are integrable, since the proof is very easy. I then can also give the proof of the Fundamental theorem of calculus (FTC) for monotone continuous functions, since that is also easy and conveys the full idea behind the FTC.
I.e. to me it is a sign of the carelessness with which many books are written that they give the wrong impression that what they are doing is hard. They just haven't thought about it enough to realize that what they are doing is easy if done right. They just seem to copy the same stuff from one book to another year after year.
How can the student be expected to understand the material if the author does not even think about it deeply? This theorem on integrability of all monotone and hence all piecewise monotone functions does appear in the excellent college level honors book by Apostol. It also appears, with credit to Newton, in the excellent book by Michael Comenetz. That latter book also conveys very carefully the physical intuition behind the concepts of derivative and integral.
It is usual by the way for my students to do fairly well on my test one, which covers mostly material they have seen in high school, and then to bomb on test 2, which requires actually learning something new that has been presented in my course, and learning it rather more quickly than in high school. I.e. the one or two years of high school usually lasts about 3 weeks into the college course.
In this second semester honors course I also presented the L1, L2, and sup norms on the metric space of bounded continuous functions, and proved that sup norm convergence is preserved by taking indefinite Riemann integrals over a bounded interval. This was used to deduce convergence of the derived series of a power series by the usual trick of integrating back and using the FTC.
This sort of thing is sometimes not seen until a senior analysis course in most non honors programs, and essentially never in most high schools.
The concept of lipschitz continuity was presented in order to answer the question: suppose f is Riemann integrable but not continuous on [a,b]. Then we can still define a function H = definite integral of f from a to x, and we will have the integral of f over [a,b] equalling H(b)-H(a). But how do we recognize such an H? I.e. how d we a recognize an "antiderivative" function G for f in this case such that the integral of f over [a,b] must equal G(b)-G(a)?
The answer is that G should be any lipschitz continuous function which has a derivative equal to f at those points where f is continuous. (Since f is integrable, it must be continuous at most points, as Riemann himself showed.)
This sort of thing is probably not done in any high school course anywhere.
In the first semester of the honors course I proved that all locally bounded functions on [a,b] are globally bounded there, in particular all continuous functions on [a,b] are bounded, the main result usually not proved in first semester calculus. Then one derives the mean value theorem and hence the main corollary that a differentiable function is determined on an interval up to a constant by its derivative.
I thought through the usual proofs and remade them into more elementary arguments using infinite decimals instead of abstract axiomatic arguments, to render them easier and more concrete. I have not seen such arguments in any books.
My experience is that even strong high school AP calc students are challenged by my first semester honors course, and that is where I advise most of them to begin. The rare student who is beyond that level is advised to take the first semester spivak style "super honors" course. Hardly anyone is recommended to take a later (second semester or higher) course. The honors level ones are too hard, and the non honors level ones may be as well, but they also run the risk of falling below the honors level of challenge that an AP student deserves.
However it could be reasonable for a student who does not want to be a mathematician, but is interested in engineering, or another application of calculus, and who has the desired level of computational skill in calculus, to begin in a later non honors course. This is provided they are not interested in learning calculus at a theoretical level and are happy in a non honors class as a means to a practical end, and may not be as intellectually challenging.
Here the function is integrable because it is "monotone" decreasing. Newton already proved before Riemann that all monotone functions have a definite integral. It is certainly not a sign of foolishness to forget or not have seen this. I am just indicating the level of subtlety that a college course may contain that is not usual in high school.
In most books the theorem that all continuous functions are integrable is stated but not proved. It seemed to me that since most functions people actually encounter are piecewise monotone (e.g. all polynomials, rational functions, exponential, log, and trig functions), it would be nice to give the actual proof that such functions are integrable, since the proof is very easy. I then can also give the proof of the Fundamental theorem of calculus (FTC) for monotone continuous functions, since that is also easy and conveys the full idea behind the FTC.
I.e. to me it is a sign of the carelessness with which many books are written that they give the wrong impression that what they are doing is hard. They just haven't thought about it enough to realize that what they are doing is easy if done right. They just seem to copy the same stuff from one book to another year after year.
How can the student be expected to understand the material if the author does not even think about it deeply? This theorem on integrability of all monotone and hence all piecewise monotone functions does appear in the excellent college level honors book by Apostol. It also appears, with credit to Newton, in the excellent book by Michael Comenetz. That latter book also conveys very carefully the physical intuition behind the concepts of derivative and integral.
It is usual by the way for my students to do fairly well on my test one, which covers mostly material they have seen in high school, and then to bomb on test 2, which requires actually learning something new that has been presented in my course, and learning it rather more quickly than in high school. I.e. the one or two years of high school usually lasts about 3 weeks into the college course.
In this second semester honors course I also presented the L1, L2, and sup norms on the metric space of bounded continuous functions, and proved that sup norm convergence is preserved by taking indefinite Riemann integrals over a bounded interval. This was used to deduce convergence of the derived series of a power series by the usual trick of integrating back and using the FTC.
This sort of thing is sometimes not seen until a senior analysis course in most non honors programs, and essentially never in most high schools.
The concept of lipschitz continuity was presented in order to answer the question: suppose f is Riemann integrable but not continuous on [a,b]. Then we can still define a function H = definite integral of f from a to x, and we will have the integral of f over [a,b] equalling H(b)-H(a). But how do we recognize such an H? I.e. how d we a recognize an "antiderivative" function G for f in this case such that the integral of f over [a,b] must equal G(b)-G(a)?
The answer is that G should be any lipschitz continuous function which has a derivative equal to f at those points where f is continuous. (Since f is integrable, it must be continuous at most points, as Riemann himself showed.)
This sort of thing is probably not done in any high school course anywhere.
In the first semester of the honors course I proved that all locally bounded functions on [a,b] are globally bounded there, in particular all continuous functions on [a,b] are bounded, the main result usually not proved in first semester calculus. Then one derives the mean value theorem and hence the main corollary that a differentiable function is determined on an interval up to a constant by its derivative.
I thought through the usual proofs and remade them into more elementary arguments using infinite decimals instead of abstract axiomatic arguments, to render them easier and more concrete. I have not seen such arguments in any books.
My experience is that even strong high school AP calc students are challenged by my first semester honors course, and that is where I advise most of them to begin. The rare student who is beyond that level is advised to take the first semester spivak style "super honors" course. Hardly anyone is recommended to take a later (second semester or higher) course. The honors level ones are too hard, and the non honors level ones may be as well, but they also run the risk of falling below the honors level of challenge that an AP student deserves.
However it could be reasonable for a student who does not want to be a mathematician, but is interested in engineering, or another application of calculus, and who has the desired level of computational skill in calculus, to begin in a later non honors course. This is provided they are not interested in learning calculus at a theoretical level and are happy in a non honors class as a means to a practical end, and may not be as intellectually challenging.
Last edited: